2D Materials

RECEIVED 14 May 2020

REVISED 19 June 2020

ACCEPTED FOR PUBLICATION 10 July 2020

PUBLISHED
19 October 2020

LETTER

Reduced thermal conductivity of supported and encased monolayer and bilayer MoS₂

Alexander J Gabourie¹, Saurabh V Suryavanshi¹, Amir Barati Farimani² and Eric Pop^{1,3,4}

- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
- ² Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, United States of America
- ⁴ Precourt Institute for Energy, Stanford University, CA 94305, United States of America

E-mail: epop@stanford.edu

Keywords: MoS₂, thermal conductivity, molecular dynamics, supported, encased, monolayer, bilayer Supplementary material for this article is available online

Abstract

Electrical and thermal properties of atomically thin two-dimensional (2D) materials are affected by their environment, e.g. through remote phonon scattering or dielectric screening. However, while it is known that mobility and thermal conductivity (TC) of graphene are reduced on a substrate, these effects are much less explored in 2D semiconductors such as MoS₂. Here, we use molecular dynamics to understand TC changes in monolayer (1L) and bilayer (2L) MoS₂ by comparing suspended, supported, and encased structures. The TC of monolayer MoS₂ is reduced from ~117 W m⁻¹ K⁻¹ when suspended, to ~31 W m⁻¹ K⁻¹ when supported by SiO₂, at 300 K. Encasing 1L MoS₂ in SiO₂ further reduces its TC down to ~22 W m⁻¹ K⁻¹. In contrast, the TC of 2L MoS₂ is not as drastically reduced, being >50% higher than 1L both when supported and encased. These effects are due to phonon scattering with remote vibrational modes of the substrate, which are partly screened in 2L MoS₂. We also examine the TC of 1L MoS₂ across a wide range of temperatures (300 K to 700 K) and defect densities (up to 5×10^{13} cm⁻²), finding that the substrate reduces the dependence of TC on these factors. Taken together, these are important findings for all applications which will use 2D semiconductors supported or encased by insulators, instead of freely suspended.

1. Introduction

Two-dimensional (2D) semiconducting MoS₂ is a promising material for technologies beyond silicon [1, 2], flexible and transparent electronics [3, 4], and thermoelectric applications [5, 6]. However, it is known that electrical and thermal conductivities in other atomically thin 2D materials, like graphene, degrade when in contact with a substrate due to scattering with substrate impurities or remote phonons [7-9]. This occurs because electron and phonon wavelengths are comparable to or larger than the 2D material thickness, especially in monolayers. In realistic applications, 2D materials will almost always be used in contact with a metal (for contacts) or an insulator (for gate dielectrics, substrates, or encapsulation layers), thus it is important to understand their thermal properties in this context. Moreover, it is already known that thermal

bottlenecks limit nanoelectronics performance with traditional semiconductors [10, 11]. Therefore, such considerations must be included when evaluating future 2D material applications.

Thermal transport in 2D materials is fundamentally different than in bulk because transport is confined to two dimensions and 2D material interfaces are dominated by van der Waals (vdW) interactions, which present a bottleneck to heat removal from 2D devices [12, 13]. In fact, the MoS₂–SiO₂ vdW interface is known to have a large thermal resistance, equivalent to that of ~90 nm of SiO₂ [12]. To understand its effect in the context of a 2D device, we refer to figure 1. For a thermally 'long' 2D device (of length $L \gg 3L_{\rm H}$, where $L_{\rm H} \sim 0.1~\mu{\rm m}$ is the thermal healing length [14]), the temperature rise is mostly determined by this interfacial thermal resistance [14, 15]; however, for thermally 'short' devices ($L < 3L_{\rm H}$) heat can be removed at the contacts and the temperature

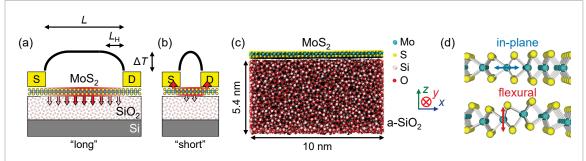


Figure 1. Cartoons of thermally (a) 'long' and (b) 'short' MoS₂ devices, i.e. transistors or interconnects. The thermally 'long' device dissipates heat mostly through the substrate (see red arrows), whereas the 'short' device sinks heat mostly through its contacts. The device is thermally 'long' or 'short' with respect to the thermal healing length, $L_{\rm H} \sim 0.1~\mu {\rm m}$ for MoS₂ on SiO₂ substrates. In practice, both device types are often encapsulated by another insulator (not shown, but discussed later). (c) Simulation domain of monolayer MoS₂ ($10 \times 10~{\rm nm}^2$) supported by 5.4 nm of amorphous SiO₂. Suspended MoS₂ simulations use an identical MoS₂ structure without SiO₂. (d) Schematic showing in-plane (top) and flexural (bottom) phonons in MoS₂. Dominant atomic motion for in-plane phonons is in the *x* or *y* direction, and in the out-of-plane, or *z* direction, for flexural phonons.

rise strongly depends on the lateral, in-plane thermal conductivity of the 2D material [15]. Given that 2D devices have already been demonstrated with sub-100 nm dimensions [16–19], it is crucial to determine how the substrate limits the thermal conductivity of 2D materials like MoS₂.

Thermal measurements of geological, bulk MoS2 samples have estimated an in-plane thermal conductivity [20-24] of 82 to 110 W m⁻¹ K⁻¹ and cross-plane thermal conductivity of ~5 W m⁻¹ K⁻¹ [25]. On the other hand, a vast majority of measurements of monolayer (1L) MoS2 exist only for freely suspended samples, revealing a range of 13 to 97 W m⁻¹ K⁻¹ for the in-plane thermal conductivity, ostensibly due to sample-to-sample variation between mechanically exfoliated [26, 27] and chemically synthesized samples [28-32]. (Below, we will see that variation of defect densities could explain this measurement variation.) Simulation efforts also display large variations due to different techniques or inter-atomic potentials, and have only focused on bulk or suspended MoS₂. Interestingly, most simulations find the 1L in-plane thermal conductivity to fall in two distinct ranges at 300 K (excluding studies with extremely high or low values), i.e. between 19 to 38 W m⁻¹ K⁻¹ on the low end [26, 33–41] and between 82 to 178 W m⁻¹ K⁻¹ on the high end [30, 42-56], with no calculations falling between the two (as summarized in supplementary figure S1 (available online at stacks.iop.org/2DM/8/011001/ mmedia)).

Despite these efforts, there are no simulation studies on the thermal conductivity of MoS_2 *supported* or *encased* by an insulator such as SiO_2 , and only one recent experiment [57]. In contrast, several studies of substrate-supported [7, 8, 57–59] or encased [60] graphene have found its thermal conductivity reduced by $5-10\times$ or $30-40\times$, respectively, compared to suspended graphene, agreeing well with simulations [8, 61]. Similarly, simulations of SiO_2 -supported silicene [62] predict ~78% thermal

conductivity degradation compared to suspended silicene. One reason for the lack of thermal measurements on other supported or encased 2D semiconductors is that their thermal conductivity is much lower than graphene. This makes it difficult to distinguish the heat flowing laterally in the ultrathin 2D material vs. the much thicker supporting or encasing insulator. Thus, this is an area where atomistic simulations can play an important role, not only to quantify the effects of the adjacent insulator on the thermal conductivity of a 2D semiconductor, but also to provide physical insight into why this occurs, opening the door for tuning such 2D material properties. This is the aim of the present study, with respect to 1L and 2L MoS₂, supported and encased by SiO_2 .

2. Simulation methodology

The thermal conductivities of crystalline materials can be well described by the Peierls-Boltzmann transport equation paired with calculations from density functional theory [63]. However, when systems have broken symmetry, these methods struggle to reproduce experimental measurements [64]. Such is the case for supported 2D material systems (which include interfaces) and disordered materials (i.e. amorphous, defective), both breaking symmetry. Given that adequate material potentials exist, classical molecular dynamics (MD) can overcome these limitations and accurately model all anharmonicities and phonon-phonon interactions at relevant length and time scales [51]. Recently, a comparative study of empirical MD potentials has determined the optimal potential for thermal transport in MoS₂ [51], making MD a more attractive method. For these reasons, we choose to use MD for all simulations in this study.

All results in this study are calculated using the Graphics Processing Units Molecular Dynamics (GPUMD, here version 2.1) package [65–67]. For supported and encased MoS₂ calculations, we

modified the GPUMD package to isolate only the MoS₂ contributions to thermal conductivity. We use the LAMMPS package [68, 69] to check for consistent forces between the different simulation packages. To model the atomic interactions in MoS₂, as well as between layers of MoS_2 , we use the reactive empirical bond-order potential with a Lennard-Jones addition (REBO-LJ) [70, 71]. The REBO-LJ implementation in GPUMD has a modification introduced by Stewart and Spearot [72], and we use the LJ parameters designed for a 300 K crystal temperature [71]. We model the SiO₂ with the Tersoff potential [73] parameterized by Munetoh et al [74] and the MoS₂-SiO₂ van der Waals (vdW) interactions with the LJ potential using the Lorentz-Berthelot mixing rules. The mixing parameters are listed in table S1 of the supplement.

All simulations are based on three structures: suspended MoS₂, MoS₂ supported on amorphous SiO₂ (a-SiO₂), or MoS₂ encased (top and bottom) by a-SiO₂. We study both monolayer and bilayer MoS₂ in these scenarios. The simulation cell areas are $10 \times 10 \text{ nm}^2$, the MoS₂ monolayer is 6.15 Å thick, consistent with experimental observations [75], and the a-SiO₂ substrate is 5.4 nm thick as shown in figure 1(c). We choose our simulation cell area to be the minimum size needed to reproduce the 1L MoS2 thermal conductivity results from previous work [51] and find the MoS2 thermal conductivity to be independent of a-SiO₂ thickness (see section 3 in the supplement). We use periodic in-plane boundary conditions (BCs) to model an infinite MoS₂ sheet and minimize finite-size effects on phonon mean free paths. In the out-of-plane direction, vacuum and free BCs are used. The a-SiO₂ is created by a simulated annealing, the details of which can be found in section 4 of the supplement.

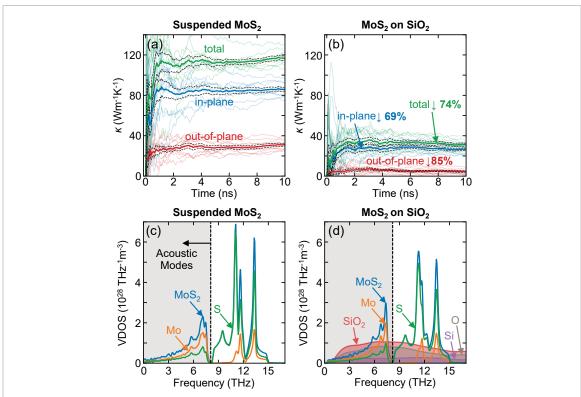
To compute the thermal conductivity we use the homogenous nonequilibrium MD (HNEMD) method [76]. This method is consistent with, but more efficient than, the commonly used equilibrium MD (EMD) and nonequilibrium MD (NEMD) methods [77], and it does not have boundary scattering because of periodic BCs in the transport direction. The HNEMD method requires an additional driving force parameter F_e to calculate an applied external force [76]. Because MoS2 has hexagonal symmetry, the intrinsic in-plane thermal conductivity is isotropic. As such, we apply the driving force parameter in only one direction, reducing it to a scalar. Here we choose $F_e = 0.2 \,\mu\text{m}^{-1}$, consistent with previous HNEMD simulations for MoS₂ [51]. The thermal conductivity κ , with a simplification due to isotropy, is then [51, 76]:

$$\kappa(t) = \frac{1}{t} \int_0^t \frac{\langle J(\tau) \rangle_{\text{ne}}}{TVF_{\text{e}}} d\tau \tag{1}$$

where J is the heat current, T is the temperature, and V is the system volume. The integral represents a

post-processed, running average of thermal conductivity over a simulation up to time t. The integrand is the direct thermal conductivity calculated by GPUMD. Using a time step of 0.5 fs, we output average heat current every 500 fs, and use equation (1) to compute the final value of thermal conductivity, which converges by 10 ns. (Additional simulation details are given in supplementary section 5.)

Due to the influence of the driving force parameter (F_e) on the heat flux and the direct calculation of thermal conductivity, the HNEMD method is able to compute the substrate-supported thermal conductivity, a situation where using the EMD method was shown to be challenging [62]. Furthermore, GPUMD decomposes the in-plane thermal conductivity into contributions from in-plane atomic motion (dominant in longitudinal and x-y transverse phonons) and out-of-plane atomic motion (dominant in flexural phonons) [52]. Schematics of phonons related to each type of motion are shown [78] in figure 1(d) and discussed further below. More details about the HNEMD thermal conductivity and the GPUMD heat flux formulation can be found in [76] and [79]. The final thermal conductivity of each simulation is taken to be $\kappa(t = 10 \text{ ns})$ using equation (1). Our reported values are averaged over n = 10 independent runs (i.e. simulations with different initial velocities) with a standard error of σ / \sqrt{n} , where σ is the standard deviation of $\kappa(t = 10 \text{ ns})$ values over the *n* independent runs.


3. Results and discussions

3.1. Monolayer MoS₂

We first calculate the in-plane thermal conductivity of suspended and SiO2-supported monolayer MoS₂ in figures 2(a) and (b) respectively, including its decomposition into in-plane and out-ofplane atomic motion contributions. The suspended 1L MoS_2 thermal conductivity (converged at t = 10 ns and averaged over n = 10 independent runs) is $\kappa = 117.0 \pm 2.0 \; \mathrm{W} \; \mathrm{m}^{-1} \; \mathrm{K}^{-1}$ (in agreement with measurements of bulk [20] MoS₂ and recent simulations [51]) with contributions from in-plane atomic motion of 85.9 \pm 2.1 W m⁻¹ K⁻¹ and out-of-plane motion of 31.1 \pm 1.6 W m⁻¹ K⁻¹. In contrast, we find the in-plane thermal conductivity of MoS₂ supported on a-SiO₂ to be 30.9 \pm 1.5 W m⁻¹ K⁻¹ (~74% decrease) with in-plane and out-of-plane contributions of 26.3 \pm 1.2 W m⁻¹ K⁻¹ (~69% decrease) and $4.6 \pm 0.7 \,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}$ (~85% decrease), respectively. We note this result is smaller than the $63 \pm 22 \text{ W m}^{-1} \text{ K}^{-1}$ recently measured for SiO_2 supported MoS₂ [57]; however, a sputtered, 20 nm Ni capping layer may have affected these in-plane thermal conductivity measurements.

While our simulations show a greater proportion of the out-of-plane contribution is damped on

Figure 2. Total thermal conductivity (green lines) of (a) suspended 1L MoS₂ and (b) SiO₂-supported 1L MoS₂ including contributions from in-plane (blue lines) and out-of-plane (red lines) atomic motion. Semi-transparent lines represent independent simulations, solid lines represent averages over all runs, and dotted lines show the standard error. The percent reduction in thermal conductivity from suspended to supported MoS₂ is labeled in (b). The elemental vibrational density of states (VDOS) for the suspended and supported MoS₂ systems are shown in (c) and (d), respectively, with the shaded regions highlighting the heat-carrying, acoustic phonons in MoS₂.

a-SiO₂, the reduction of the in-plane contribution drives the overall reduction in thermal conductivity. This contrasts the thermal conductivity reduction in supported graphene, which, experimentally and through simulation, has been shown to suffer an ~80% to ~90% degradation mostly from the damping of its out-of-plane motion (which directly corresponds to flexural phonons in graphene) [7, 8, 61]. The difference is due to the dominant mode of thermal transport in MoS₂ and graphene. Graphene follows a symmetry-based selection rule that restricts anharmonic phonon-phonon scattering of flexural modes [80] leading to an out-of-plane contribution that carries approximately $2 \times$ more heat than in-plane [81]. Monolayer MoS₂ is three atoms thick and does not follow this rule, leading to an in-plane contribution that carries more than $2\times$ the heat of its out-of-plane contribution. Thus, our findings show that the suppression of the dominant mode of thermal transport (out-of-plane atomic motion for graphene, in-plane for MoS₂) drives the overall reduction of thermal conductivity in supported 2D materials, not *only* the dampening of the out-of-plane motion.

To better understand thermal transport in supported MoS_2 , we plot the vibrational density of states (VDOS) of both suspended and supported MoS_2 with a-SiO₂ in figures 2(c) and (d), respectively. From either VDOS plot, we can see that molybdenum

contributions to the overall VDOS are much larger than sulfur below 8 THz. This is the frequency range of the acoustic modes which are the main heat carriers [56], meaning that much of the thermal transport is carried out by vibrations of molybdenum atoms. Because the acoustic modes of MoS₂ do not appear to be affected by the substrate, we conclude that additional scattering with the SiO₂ causes the reduction in thermal conductivity of supported MoS₂. This is confirmed by figure 2(d) which reveals a significant overlap of the a-SiO2 and MoS2 VDOS, especially at the lower frequencies of the heat-carrying acoustic modes. The supported MoS₂ phonons have substantially more modes (including substrate vibrations) to interact with, i.e. through anharmonic scattering or harmonic energy transfer [82], disrupting thermal transport in the MoS₂ and reducing its thermal conductivity. This phenomenon is similar to that of remote phonon scattering for the reduction of transistor mobility in ultrathin films or silicon inversion layers [83, 84]. For additional details on the calculation of the VDOS, see supplementary section 7.

3.2. Temperature dependence

MoS₂ electronic devices will sometimes operate several hundred Kelvin above room temperature as seen already in self-heating field-effect transistors [13, 85], and as desired for some thermoelectric applications

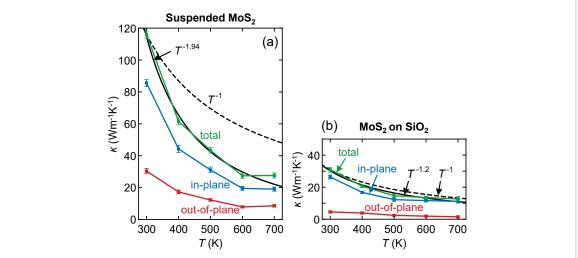


Figure 3. Total in-plane thermal conductivity of single-layer MoS_2 as a function of temperature for both (a) suspended and (b) supported structures. The dotted black lines illustrate the expected T^{-1} dependence and the solid black lines show a dependence from fits to our calculations.

[86]. Thus, we also investigate the thermal conductivity of both suspended and supported MoS₂ from 300 K to 700 K. This range is above the Debye temperature (θ_D) of MoS₂, ensuring the validity of these classical MD simulations without the need for quantum corrections [87]. For suspended 1L MoS₂, previous calculations [38] have placed the Debye temperature at $\theta_D \approx 262$ K, with bulk MoS₂ measured to be $\theta_D \approx 260$ –320 K [88].

The simulation results for suspended 1L MoS₂ are shown in figure 3(a), revealing a steep temperature-related decline for both in-plane and out-of-plane atomic motion contributions. The overall reduction of thermal conductivity with temperature scales as $\kappa \propto T^{-1.94}$ (solid black line) which implies a stronger contribution of four-phonon scattering [89] ($\kappa \propto T^{-2}$; more common at high $T \gg \theta_{\rm D}$ which also plays a role at high temperature in Si and Ge) [90, 91] than of three-phonon Umklapp scattering ($\kappa \propto T^{-1}$; dashed black line).

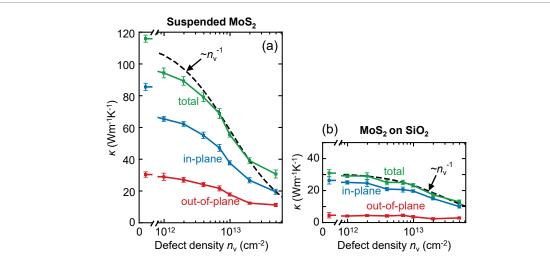

This temperature dependence appears stronger than in other suspended low-dimensional materials, such as carbon nanotubes and graphene (with natural concentrations of ¹³C isotopes), which experimentally show a T^{-x} dependence, with 1.1 < x < 1.3[92, 93]. However, the carbon nanotube and graphene data do not probe temperatures above their $\theta_{\rm D}$, which is very high, $\theta_{\rm D} \approx 2100$ K [94]. In addition, the temperature dependence of isotopically pure graphene (0.01% ¹³C) was found to be steeper than for natural graphene [93]. Since our modeled Mo and S masses are weighted averages over naturally occurring isotopes, we effectively have an isotopically pure system (i.e. one mass for each atom type), which may explain why the temperature dependence we find here for MoS₂ is more akin to that of isotopically pure graphene. Relevant details on the kinetic theory and fitting can be found in supplementary sections 8 and 9, respectively.

Figure 3(b) shows the temperature dependence of supported 1L MoS₂ is substantially different than the suspended 1L MoS₂. We note that, since the outof-plane motion is already severely damped by the substrate, the in-plane contribution dominates the total thermal conductivity reduction with temperature. Comparing our calculations to kinetic theory again, we find the temperature decay scales as $\sim T^{-1.2}$, which suggests that three-phonon processes dominate the reduction of thermal conductivity with temperature. However, this is not necessarily an accurate characterization of the dominant phonon processes in MoS₂ because we cannot decouple its intrinsic scattering events from those involving the substrate vibrations. We do know that the fourphonon processes, which are influential in our suspended MoS₂, are overwhelmed by the effects of the substrate.

3.3. Defect dependence

It is known that the properties of 2D materials are degraded or altered by defects that are either naturally occurring or introduced during growth or layer transfer processes [95]. Here, we study the effects of the most common defect type, zero-dimensional sulfur vacancies [95–99], on the thermal conductivity of MoS₂. Previous experimental studies have reported sulfur vacancy densities from $n_{\rm v}=7\times10^{10}~{\rm cm}^{-2}$ to 6.5 × 10¹³ cm⁻² for exfoliated MoS₂ or MoS₂ grown by chemical vapor deposition (CVD) [97–101]. For this set of simulations, we randomly introduce sulfur vacancies such that their density ranges from $10^{12}~{\rm cm}^{-2}$ to $5\times10^{13}~{\rm cm}^{-2}$, which corresponds to 1 to 50 sulfur vacancies in the simulated $10\times10~{\rm nm}^2$ MoS₂ sheet. Overall, there are no vacancy clusters and

Figure 4. (a) and (b) show the in-plane thermal conductivity as a function of defect density for single-layer suspended and supported MoS₂. Similarly, the dashed black line illustrates the expected trend with defect density, here fit with $(\eta + \beta n_v)^{-1}$, with further details given in supplementary section 9. The variation of thermal conductivity over this range of defect densities can explain the range of experimental results to date, wherein defect densities can vary from sample to sample.

we expect similar trends for different single sulfur vacancy configurations [54].

The results for suspended MoS2 are shown in figure 4(a), with vacancy-free calculations plotted left of the x-axis break for reference. Here we find that a small vacancy density of 10¹² cm⁻² already reduces the total thermal conductivity by ~19%. For the vacancy densities studied, the calculated thermal conductivity range is 94.4 \pm 3.1 W m⁻¹ K⁻¹ to $30.7 \pm 2.5 \text{ W m}^{-1} \text{ K}^{-1}$, which encompasses the experimental results of ~84 W m⁻¹ K⁻¹ for exfoliated 1L MoS₂ and ~30 W m⁻¹ K⁻¹ for CVD-grown 1L MoS₂ [27, 29]. This relationship between our calculations and experiment is not unexpected because CVD-grown MoS₂ could be more defective than exfoliated [97, 98], particularly at the time of the measurements referenced here. Recent Peierls-Boltzmann transport calculations have also pointed to defects when explaining the large range in reported experimental thermal conductivities [54].

We also find that the contribution from out-of-plane motion is less sensitive to defects than the inplane contribution. This imbalance is most severe at our lowest defect density $(10^{12}~{\rm cm}^{-2})$ as the out-of-plane contribution, when compared to our defect-free structure, is reduced by only ~7% compared to the ~24% reduction of the in-plane contribution. The dashed line in figure 4(a) plots the expected defect dependence trend based on kinetic theory $(\kappa \propto \sim n_{\rm v}^{-1})$ [89]. The suspended MoS₂ follows this trend with small deviations at extremes. More information on the relevant kinetic theory and fitting can be found in supplementary sections 8 and 9, respectively.

Compared to defective suspended MoS_2 , defective supported MoS_2 has a thermal conductivity that is less sensitive to changes in vacancy density. Figure 4(b) reveals that the thermal

conductivity only decreases by ~5.5% at a vacancy density of 10¹² cm⁻² compared to defect-free, supported MoS₂. At the highest vacancy density, the thermal conductivity has decreased by ~58% to 12.9 \pm 1.2 W m⁻¹ K⁻¹, which comes from a ~62% decrease to 10.0 \pm 1.0 W m⁻¹ K⁻¹ from the in-plane contribution and a ~36% decrease to 2.9 \pm 0.6 W m⁻¹ K⁻¹ from the out-of-plane contribution, with respect to defect-free, supported MoS₂. We note that the out-of-plane contribution is not as sensitive to defects as the in-plane contribution. For supported MoS₂, vacancies are not the dominant dampening factor to the out-ofplane motion because the substrate effects are much stronger. As before, in figure 4(b) we also show the total thermal conductivity vs. vacancy density based on kinetic theory (dashed line). The trend agrees well with our simulations, suggesting that effects of the substrate and defects on thermal conductivity are not coupled. Overall, the thermal conductivity of supported MoS₂ is significantly lower than of suspended MoS₂ (for the same defect density), meaning the substrate always plays a substantial role in reducing the thermal conductivity of monolayer MoS₂.

3.4. Bilayer MoS₂

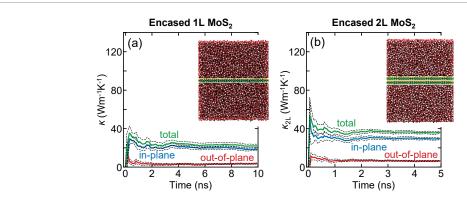
In addition to 1L MoS₂, we also investigate the thermal properties of the bilayer (2L) material, which is of interest for electronics because it has smaller band gap, lower contact resistance, and generally higher mobility [102, 103]. We repeat the previous simulation protocol but with a Bernalstacked (ABA) 2L MoS₂. The resulting *suspended* bilayer thermal conductivity, seen in figure 5(a), is $\kappa_{2L} = 94.6 \pm 1.6 \text{ W m}^{-1} \text{ K}^{-1}$ and is consistent with previous 2L MoS₂ simulations [51]. The

Figure 5. Total thermal conductivity (green lines) of (a) suspended 2L MoS₂ and (b) supported 2L MoS₂ including their in-plane (blue lines) and out-of-plane (red lines) contributions. The percent reduction in thermal conductivity from suspended to supported 2L MoS₂ is shown in (b) and the supported 2L MoS₂ structure is included in the inset.

in-plane contribution is $73.0 \pm 2.1 \text{ W m}^{-1} \text{ K}^{-1}$ and out-of-plane atomic vibrations contribute $21.6 \pm 0.9 \text{ W m}^{-1} \text{ K}^{-1}$, representing a ~15% and ~30% decrease from suspended 1L MoS₂. For suspended 2L, we note out-of-plane motion contributes a smaller proportion of the thermal conductivity compared to 1L MoS₂. Previous studies attributed this to a change in the phonon dispersion as well as an increase in flexural phonon scattering rates [27, 52]. The drop in thermal conductivity from 1L to 2L is also consistent with experiment [27], although the measurement uncertainty does not yield a definitive trend.

Our supported 2L MoS2 calculations, seen in figure 5(b), reveal a thermal conductivity of $46.8 \pm 1.8 \text{ W m}^{-1} \text{ K}^{-1} \ (\sim 50\% \text{ decrease vs. suspen-}$ ded 2L) with in-plane and out-of-plane contributions of 38.5 \pm 1.8 W m⁻¹ K⁻¹ (~47% decrease) and $8.3 \pm 0.3 \text{ W m}^{-1} \text{ K}^{-1}$ (~61% decrease), respectively. This thermal conductivity is 50% larger than supported 1L MoS₂. Thus, given it has double the thickness, supported 2L MoS₂ can carry three times more heat than supported 1L MoS₂. The top layer of 2L MoS₂ is partly 'shielded' (screened) from remote phonon scattering with the a-SiO₂, better maintaining intrinsic behavior and yielding a higher thermal conductivity than supported 1L MoS₂. Again, we find the suppression of in-plane atomic motion drives the overall reduction in thermal conductivity. Experimentally, a larger thermal conductivity in supported 2L MoS2 than 1L MoS2 has also been

These results have interesting implications for 2L-based electronic devices because, in addition to improved lateral heat flow (as seen here), previous work has also suggested that 2L MoS₂ has a lower thermal boundary resistance with SiO₂ than 1L MoS₂ [104], i.e. better cross-plane heat flow. In other words, heat removal from 2L-based MoS₂ devices is expected to be better than 1L devices all-around. Thus, 2L MoS₂ could be more attractive for flexible electronics and integrated circuit


applications, where heat removal is more important, in addition to its electronic advantages mentioned earlier.

3.5. Encased monolayer and bilayer MoS₂

For technological reasons such as encapsulation, doping, or top-side gating, MoS₂ devices are often encased by a superstrate, such as an oxide [17, 103, 105, 106]. In order to simulate these circumstances, we duplicate the substrate and place it above MoS₂, creating the SiO₂-encased 1L and 2L MoS₂ structures shown in the insets of figure 6. In figure 6(a), we find the thermal conductivity of encased 1L MoS_2 is 22.1 \pm 1.8 W m⁻¹ K⁻¹, with in-plane and out-of-plane contributions of 18.3 \pm 1.4 W m $^{-1}$ K $^{-1}$ and 3.8 \pm 0.6 W m⁻¹ K⁻¹, respectively. Compared to supported 1L MoS₂, the thermal conductivity drops an additional ~28%. A similar degradation of the thermal conductivity of encased graphene was observed experimentally [60], but with a ~70% decrease from supported [7] to encased [60]. However, we note that in the encased experiments [60] the graphene may have been damaged during the top SiO₂ layer deposition, partly causing the lower thermal conductivity.

Surprisingly, the 1L MoS₂ out-of-plane contribution only dropped by ~17% from supported to encased structures, in stark contrast to the ~85% drop from suspended to supported structures. This suggests a substrate already suppresses most out-of-plane motion and a superstrate cannot suppress it much further. Additionally, comparisons of the VDOS calculations (as in figure 2(d) but for encased MoS_2) reveal non-negligible changes in the out-of-plane VDOS for sulfur atoms (~10%-15% reduction for superstrate structure) for frequencies above 10 THz. These frequencies are in the optical phonon range which do not contribute significantly to thermal conductivity in MoS₂ due to low phonon velocities. The main reduction factor is likely the large number of vibrational modes in a-SiO₂ (encased structure has

Figure 6. Thermal conductivity of encased (a) monolayer and (b) bilayer MoS₂ with corresponding structures shown in the insets. Encased 2L MoS₂ has a higher thermal conductivity than 1L but both structures have a lower thermal conductivity than their corresponding supported structures.

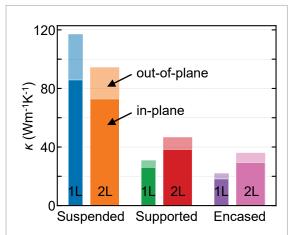


Figure 7. Bar chart summarizing the calculations of thermal conductivity for different structures studied in this work. From left to right, the total thermal conductivities are: 117.0, 94.6, 30.9, 46.8, 22.1, and 36.0, all in W m $^{-1}$ K $^{-1}$. The bottom segment of each bar shows the contribution from in-plane atomic motion, and the top segments show that from the out-of-plane atomic motion. The in-plane contribution dominates heat flow in MoS $_2$ and is most strongly affected by the presence or absence of a substrate or encapsulation. (In contrast, the out-of-plane contributions dominate in graphene.)

twice as many as supported structure) that MoS₂ phonons can interact with.

We also examine encased 2L MoS₂ as shown in figure 6(b). We repeat the simulation protocol verbatim except we reduce the run time from 10 ns to 5 ns when the thermal conductivity appears sufficiently converged. The thermal conductivity of encased 2L MoS₂ is 36 ± 0.2 W m⁻¹ K⁻¹, a decrease of ~23% from the supported 2L structure (and a decrease of ~62% from suspended bilayer). However, this reduction is proportionally less than that experienced by the encased 1L MoS2. Overall, encased 2L MoS₂ has a thermal conductivity ~63% larger than and can carry over three times the heat of encased 1L MoS₂. Thus, 2L MoS₂ will have a higher thermal conductivity than the monolayer, both when interacting with a substrate and/or superstrate, making 2L MoS₂ more attractive for applications with larger heat removal requirements. An increase in thermal conductivity with number of layers was also measured in encased graphene around room temperature [60]. As it did in graphene, we expect the thermal conductivity of encased MoS_2 to increase with number of layers up to the bulk MoS_2 thermal conductivity value (83 \pm 3 W m⁻¹ K⁻¹ for MoS_2 using this potential [51]). Given that remote phonon scattering (with the substrate) only penetrates up to ~1 nm into the MoS_2 (see section 3 of the supplement), we expect the thermal conductivity of encased MoS_2 to converge to the bulk value within a few layers. However, an extended study on the layer-dependent thermal conductivity for supported and encased MoS_2 , up to bulk-like thickness, is left for follow-up work.

4. Summary and conclusions

We investigated the effects of an SiO_2 substrate and encapsulation on the in-plane thermal conductivity of MoS_2 using molecular dynamics simulations. Figure 7 summarizes the thermal conductivities of all structures considered. The thermal conductivity of 1L MoS_2 decreases from ~117 W m⁻¹ K⁻¹ (suspended) to ~31 W m⁻¹ K⁻¹ when supported by an a- SiO_2 substrate, a drop of ~74% due to remote phonon scattering with a- SiO_2 vibrational modes. While out-of-plane atomic motion is more sensitive to substrate effects, we found the *dominant* mode of thermal transport drives the overall reduction in thermal conductivity of supported 2D materials; for MoS_2 it is the in-plane atomic motion, for graphene it is the out-of-plane atomic motion.

Our simulations suggest that a large range of defect concentrations could explain the range of thermal conductivities measured for suspended MoS_2 in the literature. However, the thermal conductivity of supported MoS_2 appears less sensitive to sulfur vacancy defects (up to 5×10^{13} cm⁻²) and temperature (up to 700 K) than suspended MoS_2 . In both supported and encased structures we found 2L has >50% higher thermal conductivity than 1L

MoS₂, thus it can carry over three times more heat. In other words, for certain applications (like integrated circuits) 2L (or slightly thicker) MoS₂ could be preferred from a purely thermal point of view because it suffers less from substrate or encapsulation effects than 1L MoS₂. However, thicker films could also have drawbacks from cross-plane heat transport [25], and ultimately applications must consider a combined electro-thermal design. Overall, our results will lead to more informed device or system designs with 2D materials from a thermal perspective.

Acknowledgments

We thank Dr. Zheyong Fan for the constructive discussion about modifying the GPUMD code for the purposes of this project. AJG acknowledges support from an NDSEG Fellowship. This work was also supported by ASCENT, one of the six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. We also thank Stanford University and the Stanford Research Computing Center (Sherlock cluster) for providing computational resources and support.

ORCID iDs

Alexander J Gabourie https://orcid.org/0000-0001-8057-4546 Amir Barati Farimani https://orcid.org/0000-

0002-2952-8576 Eric Pop 6 https://orcid.org/0000-0003-0436-8534

References

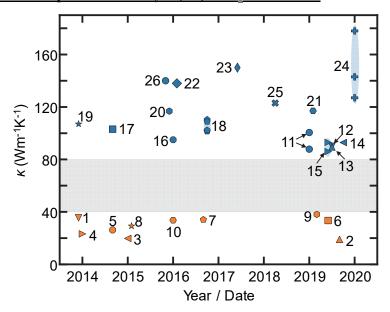
- [1] Salahuddin S, Ni K and Datta S 2018 The era of hyper-scaling in electronics *Nat. Electron.* **1** 442–50
- [2] Aly M M S et al 2015 Energy-efficient abundant-data computing: the N3XT 1,000x Computer 48 24–33
- [3] Wang B, Huang W, Chi L, Al-Hashimi M, Marks T J and Facchetti A 2018 High-k gate dielectrics for emerging flexible and stretchable electronics *Chem. Rev.* 118 5690–754
- [4] Park Y J, Sharma B K, Shinde S M, Kim M-S, Jang B, Kim J-H and Ahn J-H 2019 All MoS₂-based large area, skin-attachable active-matrix tactile sensor ACS Nano 13 3023–30
- [5] Hippalgaonkar K, Wang Y, Ye Y, Qiu D Y, Zhu H, Wang Y, Moore J, Louie S G and Zhang X 2017 High thermoelectric power factor in two-dimensional crystals of MoS₂ Phys. Rev. B 95 115407
- [6] Mansfield R and Salam S A 1953 Electrical properties of molybdenite Proc. Phys. Soc. B 66 377–85
- [7] Seol J H *et al* 2010 Two-dimensional phonon transport in supported graphene *Science* 328 213–6
- [8] Bae M-H, Li Z, Aksamija Z, Martin P N, Xiong F, Ong Z-Y, Knezevic I and Pop E 2013 Ballistic to diffusive crossover of heat flow in graphene ribbons Nat. Commun. 4 1734
- [9] Dorgan V E, Bae M-H and Pop E 2010 Mobility and saturation velocity in graphene on SiO₂ Appl. Phys. Lett. 97 082112
- [10] Pop E 2010 Energy dissipation and transport in nanoscale devices Nano Res. 3 147–69

- [11] Garimella S V et al 2008 Thermal challenges in next-generation electronic systems IEEE Trans. Compon. Packag. Technol. 31 801–15
- [12] Yalon E et al 2017 Temperature-dependent thermal boundary conductance of monolayer MoS₂ by Raman thermometry ACS Appl. Mater. Interfaces 9 43013–20
- [13] Yalon E et al 2017 Energy dissipation in monolayer MoS₂ electronics Nano Lett. 17 3429–33
- [14] Suryavanshi S V and Pop E 2016 S2DS: physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities J. Appl. Phys. 120 224503
- [15] Pop E 2008 The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes *Nanotechnology* 19 295202
- [16] English C D, Shine G, Dorgan V E, Saraswat K C and Pop E 2016 Improved contacts to MoS₂ transistors by ultra-high vacuum metal deposition *Nano Lett*. 16 3824–30
- [17] English C D, Smithe K K H, Xu R L and Pop E 2016 Approaching ballistic transport in monolayer MoS₂ transistors with self-aligned 10 nm top gates 2016 IEEE Int. Electron Devices Meeting (IEDM) (https://doi.org/10.1109/ IEDM.2016.7838355)
- [18] Xie L et al 2017 Graphene-contacted ultrashort channel monolayer MoS₂ transistors Adv. Mater. 29 1702522
- [19] Smets Q et al 2019 Ultra-scaled MOCVD MoS₂ MOSFETs with 42nm contact pitch and 250μA/μm drain current 2019 IEEE Int. Electron Devices Meeting (IEDM) (https:// doi.org/10.1109/IEDM19573.2019.8993650)
- [20] Liu J, Choi G-M and Cahill D G 2014 Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect J. Appl. Phys. 116 233107
- [21] Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D and Cahill D G 2016 Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation *Nat. Commun.* 7 13211
- [22] Jiang P, Qian X, Gu X and Yang R 2017 Probing anisotropic thermal conductivity of transition metal dichalcogenides MX₂ (M = Mo, W and X = S, Se) using time-domain thermoreflectance Adv. Mater. 29 1701068
- [23] Yuan C, Waller W M and Kuball M 2019 Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity Rev. Sci. Instrum. 90 114903
- [24] Goni M, Yang J and Schmidt A J 2018 Enhanced thermal transport across monolayer MoS₂ Nano Res. 11 2173–80
- [25] Sood A, Xiong F, Chen S, Cheaito R, Lian F, Asheghi M, Cui Y, Donadio D, Goodson K E and Pop E 2019 Quasi-ballistic thermal transport across MoS₂ thin films Nano Lett. 19 2434–42
- [26] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy ACS Nano 8 986–93
- [27] Zhang X, Sun D, Li Y, Lee G-H, Cui X, Chenet D, You Y, Heinz T F and Hone J C 2015 Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS₂ and MoSe₂ using refined optothermal Raman technique ACS Appl. Mater. Interfaces 7 25923–9
- [28] Bae J J, Jeong H Y, Han G H, Kim J, Kim H, Kim M S, Moon B H, Lim S C and Lee Y H 2017 Thickness-dependent in-plane thermal conductivity of suspended MoS₂ grown by chemical vapor deposition *Nanoscale* 9 2541–7
- [29] Yarali M et al 2017 Effects of defects on the temperature-dependent thermal conductivity of suspended monolayer molybdenum disulfide grown by chemical vapor deposition Adv. Funct. Mater. 27 1704357

- [30] Li X et al 2019 Isotope-engineering the thermal conductivity of two-dimensional MoS₂ ACS Nano 13 2481–9
- [31] Yu Y, Minhaj T, Huang L, Yu Y and Cao L 2020 In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides *Phys. Rev. Appl.* 13 034059
- [32] Zhao Y, Zheng M, Wu J, Huang B and Thong J T L 2020 Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method *Nanotechnology* 31 225702
- [33] Sgouros A P, Konstantopoulou A, Kalosakas G and Sigalas M M 2019 Temperature profiles and thermal conductivities of nanostructured transition metal dichalcogenides *Int. J. Heat Mass Transf.* 140 579–86
- [34] Ding Z, Jiang J-W, Pei Q-X and Zhang Y-W 2015 In-plane and cross-plane thermal conductivities of molybdenum disulfide *Nanotechnology* 26 065703
- [35] Cai Y, Lan J, Zhang G and Zhang Y-W 2014 Lattice vibrational modes and phonon thermal conductivity of monolayer MoS₂ Phys. Rev. B 89 035438
- [36] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Phonon thermal conductivity of monolayer MoS₂: a comparison with single layer graphene Appl. Phys. Lett. 105 103902
- [37] Patil S B, Sankeshwar N S and Mulimani B G 2019 Lattice thermal conduction in suspended molybdenum disulfide monolayers with defects J. Phys. Chem. Solids 129 31–40
- [38] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 Thermal conductivity of monolayer MoS₂, MoSe₂, and WS₂: interplay of mass effect, interatomic bonding and anharmonicity RSC Adv. 6 5767–73
- [39] Krishnamoorthy A, Rajak P, Norouzzadeh P, Singh D J, Kalia R K, Nakano A and Vashishta P 2019 Thermal conductivity of MoS₂ monolayers from molecular dynamics simulations AIP Adv. 9 035042
- [40] Su J, Liu Z-T, Feng L-P and Li N 2015 Effect of temperature on thermal properties of monolayer MoS₂ sheet *J. Alloys Compd.* 622 777–82
- [41] Saha D and Mahapatra S 2016 Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS₂ Physica E: Low-Dimens. Syst. Nanostruct. 83 455–60
- [42] Gu X and Zhao C Y 2019 Thermal conductivity of single-layer MoS_{2(1-x)}Se_{2x} alloys from molecular dynamics simulations with a machine-learning-based interatomic potential Comput. Mater. Sci. 165 74–81
- [43] Mobaraki A, Sevik C, Yapicioglu H, Çakır D and Gülseren O 2019 Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: lattice thermal conductivity as an application *Phys. Rev.* B 100 035402
- [44] Zhang J, Li X, Xiao K, Sumpter B G, Ghosh A W and Liang L 2019 The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides *J. Phys.:* Condens. Matter 32 025306
- [45] Lin C, Chen X and Zou X 2019 Phonon–grain-boundary-interaction-mediated thermal transport in two-dimensional polycrystalline MoS₂ ACS Appl. Mater. Interfaces 11 25547–55
- [46] Kandemir A, Yapicioglu H, Kinaci A, Çağın T and Sevik C 2016 Thermal transport properties of MoS₂ and MoSe₂ monolayers Nanotechnology 27 055703
- [47] Gu X and Yang R 2014 Phonon transport in single-layer transition metal dichalcogenides: a first-principles study Appl. Phys. Lett. 105 131903
- [48] Hong Y, Zhang J and Zeng X C 2016 Thermal conductivity of monolayer MoSe₂ and MoS₂ J. Phys. Chem. C 120 26067–75
- [49] Li W, Carrete J and Mingo N 2013 Thermal conductivity and phonon linewidths of monolayer MoS₂ from first principles Appl. Phys. Lett. 103 253103

- [50] Jin Z, Liao Q, Fang H, Liu Z, Liu W, Ding Z, Luo T and Yang N 2015 A revisit to high thermoelectric performance of single-layer MoS₂ Sci. Rep. 5 18342
- [51] Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Barati Farimani A, Komsa H-P, Krasheninnikov A V, Pop E and Ala-Nissila T 2019 Thermal transport in MoS₂ from molecular dynamics using different empirical potentials *Phys. Rev.* B 99 054303
- [52] Gu X, Li B and Yang R 2016 Layer thickness-dependent phonon properties and thermal conductivity of MoS₂ J. Appl. Phys. 119 085106
- [53] Cepellotti A and Marzari N 2017 Boltzmann transport in nanostructures as a friction effect *Nano Lett*. 17 4675–82
- [54] Polanco C A, Pandey T, Berlijn T and Lindsay L 2020 Defect-limited thermal conductivity in MoS₂ Phys. Rev. Mater. 4 014004
- [55] Zhao Y, Dai Z, Zhang C, Lian C, Zeng S, Li G, Meng S and Ni J 2018 Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS₂ New J. Phys. 20 043009
- [56] Wu X, Yang N and Luo T 2015 Unusual isotope effect on thermal transport of single layer molybdenum disulphide Appl. Phys. Lett. 107 191907
- [57] Rahman M, Shahzadeh M and Pisana S 2019 Simultaneous measurement of anisotropic thermal conductivity and thermal boundary conductance of 2-dimensional materials J. Appl. Phys. 126 205103
- [58] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L and Ruoff R S 2010 Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition *Nano Lett.* 10 1645–51
- [59] Estrada D et al 2019 Thermal transport in layer-by-layer assembled polycrystalline graphene films NPJ 2D Mater. Appl. 3 10
- [60] Jang W, Chen Z, Bao W, Lau C N and Dames C 2010 Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite *Nano Lett*. 10 3909–13
- [61] Ong Z-Y and Pop E 2011 Effect of substrate modes on thermal transport in supported graphene *Phys. Rev.* B 84 075471
- [62] Wang Z, Feng T and Ruan X 2015 Thermal conductivity and spectral phonon properties of freestanding and supported silicene J. Appl. Phys. 117 084317
- [63] Lindsay L, Hua C, Ruan X L and Lee S 2018 Survey of ab initio phonon thermal transport *Mater. Today Phys.* 7 106–20
- [64] Seyf H R, Gordiz K, DeAngelis F and Henry A 2019 Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics J. Appl. Phys. 125 081101
- [65] Fan Z, Siro T and Harju A 2013 Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations *Comput. Phys. Commun.* 184 1414–25
- [66] Fan Z, Chen W, Vierimaa V and Harju A 2017 Efficient molecular dynamics simulations with many-body potentials on graphics processing units *Comput. Phys. Commun.* 218 10–16
- [67] Fan Z and Gabourie A J 2018 brucefan1983/GPUMD: GPUMD-v2.1 (Version v2.1) Zenodo http://doi.org/10.5281/zenodo.2252431
- [68] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 117 1–19
- [69] https://lammps.sandia.gov/
- [70] Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo–S systems *Phys. Rev.* B 79 245110
- [71] Liang T, Phillpot S R and Sinnott S B 2012 Erratum: parametrization of a reactive many-body potential for Mo–S systems *Phys. Rev.* B 85 199903

- [72] Stewart J A and Spearot D E 2013 Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS₂) Model. Simul. Mater. Sci. Eng. 21 045003
- [73] Tersoff J 1989 Modeling solid-state chemistry: interatomic potentials for multicomponent systems *Phys. Rev.* B 39 5566–8
- [74] Munetoh S, Motooka T, Moriguchi K and Shintani A 2007 Interatomic potential for Si–O systems using Tersoff parameterization Comput. Mater. Sci. 39 334–9
- [75] Dickinson R G and Pauling L 1923 The crystal structure of molybdenite J. Am. Chem. Soc. 45 1466–71
- [76] Fan Z, Dong H, Harju A and Ala-Nissila T 2019 Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials *Phys. Rev.* B 99 064308
- [77] Xu K, Fan Z, Zhang J, Wei N and Ala-Nissila T 2018 Thermal transport properties of single-layer black phosphorus from extensive molecular dynamics simulations Model. Simul. Mater. Sci. Eng. 26 085001
- [78] http://henriquemiranda.github.io/phononwebsite/
- [79] Fan Z, Pereira L F C, Wang H-Q, Zheng J-C, Donadio D and Harju A 2015 Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations *Phys. Rev.* B 92 094301
- [80] Lindsay L, Broido D A and Mingo N 2010 Flexural phonons and thermal transport in graphene *Phys. Rev.* B 82 115427
- [81] Fan Z, Pereira L F C, Hirvonen P, Ervasti M M, Elder K R, Donadio D, Ala-Nissila T and Harju A 2017 Thermal conductivity decomposition in two-dimensional materials: application to graphene *Phys. Rev.* B 95 144309
- [82] Foss C J and Aksamija Z 2019 Quantifying thermal boundary conductance of 2D–3D interfaces 2D Mater. 6 025019
- [83] Fischetti M V, Neumayer D A and Cartier E A 2001 Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: the role of remote phonon scattering J. Appl. Phys. 90 4587–608
- [84] Chen J-H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Intrinsic and extrinsic performance limits of graphene devices on SiO₂ Nat. Nanotechnol. 3 206–9
- [85] Smithe K K H, English C D, Suryavanshi S V and Pop E 2018 High-field transport and velocity saturation in synthetic monolayer MoS₂ Nano Lett. 18 4516–22
- [86] Kong S, Wu T, Yuan M, Huang Z, Meng Q-L, Jiang Q, Zhuang W, Jiang P and Bao X 2017 Dramatically enhanced thermoelectric performance of MoS₂ by introducing MoO₂ nanoinclusions J. Mater. Chem. A 5 2004–11
- [87] Turney J E, McGaughey A J H and Amon C H 2009 Assessing the applicability of quantum corrections to classical thermal conductivity predictions *Phys. Rev.* B 79 224305
- [88] Touloukian Y S and Buyco E H 1970 Specific Heat—Nonmetallic Solids vol 5 (New York: Plenum)


- [89] Ziman J M 1960 Electrons and Phonons; the Theory of Transport Phenomena in Solids (Oxford: Clarendon)
- [90] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College)
- [91] Glassbrenner C J and Slack G A 1964 Thermal conductivity of silicon and germanium from 3°K to the melting point Phys. Rev. 134 A1058–A69
- [92] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Thermal conductance of an individual single-wall carbon nanotube above room temperature *Nano Lett.* 6 96–100
- [93] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S 2012 Thermal conductivity of isotopically modified graphene *Nat. Mater.* 11 203–7
- [94] Pop E, Varshney V and Roy A K 2012 Thermal properties of graphene: fundamentals and applications MRS Bull. 37 1273–81
- [95] Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 Defect engineering of two-dimensional transition metal dichalcogenides 2D Mater. 3 022002
- [96] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J-C 2013 Intrinsic structural defects in monolayer molybdenum disulfide Nano Lett. 13 2615–22
- [97] Vancsó P, Magda G Z, Pető J, Noh J-Y, Kim Y-S, Hwang C, Biró L P and Tapasztó L 2016 The intrinsic defect structure of exfoliated MoS₂ single layers revealed by scanning tunneling microscopy Sci. Rep. 6 29726
- [98] Hong J et al 2015 Exploring atomic defects in molybdenum disulphide monolayers Nat. Commun. 6 6293
- [99] Qiu H et al 2013 Hopping transport through defect-induced localized states in molybdenum disulphide Nat. Commun. 4 2642
- [100] Lu C-P, Li G, Mao J, Wang L-M and Andrei E Y 2014 Bandgap, mid-gap states, and gating effects in MoS₂ Nano Lett. 14 4628–33
- [101] Yu Z et al 2014 Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering Nat. Commun. 5 5290
- [102] Zhong H et al 2016 Interfacial properties of monolayer and bilayer MoS₂ contacts with metals: beyond the energy band calculations Sci. Rep. 6 21786
- [103] Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin M L, Li L-J, Dubey M, Kong J and Palacios T 2012 Integrated circuits based on bilayer MoS₂ transistors *Nano Lett.* 12 4674–80
- [104] Suryavanshi S V, Gabourie A J, Barati Farimani A and Pop E 2019 Thermal boundary conductance of two-dimensional MoS₂ interfaces J. Appl. Phys. 126 055107
- [105] Krasnozhon D, Lembke D, Nyffeler C, Leblebici Y and Kis A 2014 MoS₂ transistors operating at gigahertz frequencies Nano Lett. 14 5905–11
- [106] McClellan C J, Yalon E, Smithe K K H, Suryavanshi S V and Pop E 2017 Effective n-type doping of monolayer MoS₂ by AlO_x 2017 75th Annual Device Research Conf. (DRC) (https://doi.org/10.1109/DRC.2017.7999392)

Supplementary Information

Reduced Thermal Conductivity of Supported and Encased Monolayer and Bilayer MoS₂

Alexander J. Gabourie¹, Saurabh V. Suryavanshi¹, Amir Barati Farimani², and Eric Pop^{1,3,4,*}

1. Literature Review of Suspended Monolayer (1L) MoS₂ Simulations

Figure S1: Thermal conductivity calculations for room temperature, suspended, monolayer MoS₂ vs. publication date. Reported calculations appear to fall in two ranges: the lower range between \sim 19 to 38 Wm⁻¹K⁻¹ (orange symbols) [1-10], and the higher range between \sim 82 to \sim 178 Wm⁻¹K⁻¹ (blue symbols) [11-26]. The shaded region shows the range where no reported thermal conductivity values fall.

2. Lennard-Jones Parameters

To model van der Waals (vdW) interactions between MoS₂ and SiO₂ atoms at the interface, we use the Lorentz-Berthelot mixing rules with the appropriate pairwise parameters for each individual atomic element to define our Lennard-Jones (LJ) models. The LJ potential is defined as:

$$V = 4\chi\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
 (S1)

where ϵ is the potential well depth, r is the distance between particles, σ is the distance between particles where V=0, and χ is a scaling factor for ϵ sensitivity tests. All calculations in the main text use $\chi=1$ and the sensitivity of thermal conductivity to χ is given in section 6. The Lorentz-Berthelot mixing rules define ϵ and σ , for atom types A and B, as:

¹Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

²Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

³Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA

⁴Precourt Institute for Energy, Stanford University, CA 94305, USA

^{*}Contact: *epop@stanford.edu*

$$\epsilon_{AB} = \sqrt{\epsilon_{AA} \cdot \epsilon_{BB}} \tag{S2}$$

$$\sigma_{AB} = \frac{\sigma_{AA} + \sigma_{BB}}{2} \,. \tag{S3}$$

The ϵ and σ parameters chosen for Mo and S atoms are from the REBO-LJ potential itself (Mo and S LJ interactions are explicitly defined in this potential for multi-layer simulations) [27, 28], and the Si and O parameters are from the Universal Force Field [29]. The final LJ parameters are in the table below:

71. Li parameters used for pairwise vu w interactions.			
	Atomic Pair	ϵ (meV)	σ (Å)
	Mo-Mo*	0.58595	4.20
	Mo-S*	20.0	3.13
	Mo-Si	3.1960	4.0132
	Mo-O	1.2347	3.6591
	S-S*	2.8	3.665
	S-Si	18.672	3.478
	S-O	7 2137	3 4723

Table S1: LJ parameters used for pairwise vdW interactions.

3. MoS₂ Thermal Conductivity Dependence on Amorphous SiO₂ (a-SiO₂) Thickness

Because amorphous materials have small phonon mean free paths, and because significant interactions between SiO₂ and MoS₂ do not occur beyond our LJ cutoff distance (1 nm), we do not expect the MoS₂ thermal conductivity to depend on the thickness of a-SiO₂. We confirm this by computing the thermal conductivity of MoS₂ at three different a-SiO₂ thicknesses: 2.7 nm, 4.05 nm, and 5.4 nm. The results are shown in Fig. S2 below. The thickness we choose for all simulations in the main text is 5.4 nm.

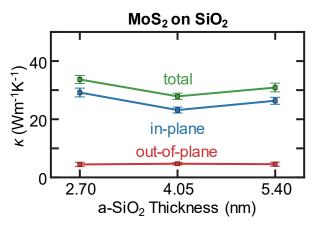


Figure S2: The thermal conductivity of supported, monolayer MoS2 vs. a-SiO2 thickness.

4. MoS₂ on a-SiO₂ Structure Creation

The structure we use for supported MoS₂ simulations is created and verified in three steps: First, we create the amorphous SiO₂ structure. Given the smallest lateral dimensions of MoS₂ that reproduced thermal conductivity results [21], we create the thickest SiO₂ that can run given the constraints of our compute cluster (Tesla V100-SXM2-16GB GPU, 48 hour time limit). Our final a-SiO₂ structure is 10×10 nm² laterally, 5.4 nm thick and we create it from a crystalline block of 43,200 SiO₂ atoms. For the crystalline to amorphous phase transition of SiO₂, we run a melt-quench simulated anneal. Using the Munetoh [30]

^{*} Parameters defined explicitly in REBO-LJ potential; not included through separate LJ potential.

potential, we find very high temperatures are required to melt the crystal structure; we find this to be true for both GPUMD [31, 32] and LAMMPS [33]. We create our final structure using only GPUMD. The simulated anneal conditions are summarized in Fig. S3 below. The entire process is under the constant atom number, volume, and temperature ensemble (*NVT*) as lateral dimensions must remain constant for MoS₂ to be unstrained in the final supported structure.

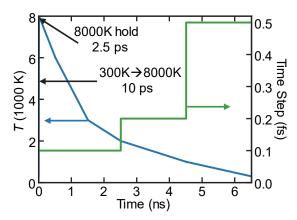
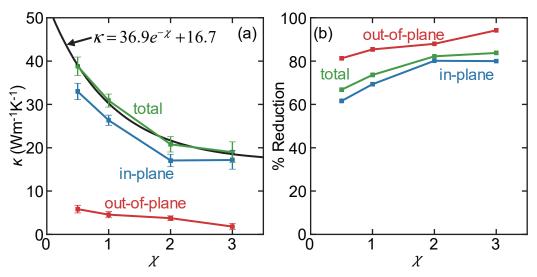


Figure S3: Simulated anneal temperature (blue) and time step (green) conditions to create amorphous SiO₂.

Second, we introduce a vacuum in the azimuthal direction. This vacuum creates two surfaces on a-SiO₂ which may not be stable. It also enables extra stress to be released in the vertical direction, although we do not see a change in SiO₂ thickness. We perform a stability check by running three, 250 ps runs: a temperature ramp up to 800 K, an 800 K hold, and a temperature ramp down to 150 K. These runs are also in the *NVT* ensemble with a time step of 0.5 fs. During this process, a few atoms leave the surfaces of SiO₂. These atoms are removed and the remaining, stable atoms are left for the final structure. We removed 18 unstable atoms for our final structure leaving a total of 43,182 SiO₂ atoms. For all subsequent simulations at all temperatures, no Si or O atoms leave the a-SiO₂ block validating the effectiveness of this approach.


The third and final step is to add the MoS_2 layer on the a-SiO₂ block. The MoS_2 sheet is placed ~3 Å (calculated from the bottom S atoms) above the a-SiO₂ surface. This configuration is run for 1 ns: the first 500 ps is a temperature ramp from 150 K to 300 K, and the remaining 500 ps is a 300 K temperature hold. The run is in the *NVT* ensemble with a time step of 0.5 fs. During this run we check the stability of the MoS_2 on a-SiO₂ structure. Our final MoS_2 on a-SiO₂ structure, shown in Fig. 1(c) of the main text, is taken from the end of this run.

5. Simulation Protocol

In all simulations, we use a time step of 0.5 fs as it conserves energy in an ensemble held at constant atom number, volume, and energy (NVE). The simulation protocol is as follows: equilibrate the system in the constant atom number, pressure, and temperature ensemble (NPT) with zero in-plane pressure and a target temperature of 300 K (unless otherwise specified) for 1 ns. For supported and encased structures, the NPT step introduces a $\leq \sim |0.7|\%$ compressive strain in MoS₂, which we find to marginally reduce its thermal conductivity. After this initialization, we run the system in the NVT ensemble using the Nosé-Hoover chain thermostat [34] at the same target temperature for 10 ns. Additionally, a driving force is applied to all atoms for the homogeneous nonequilibrium MD (HNEMD) method, which we use to calculate thermal conductivity. At 10 ns, the thermal conductivity of each structure is sufficiently converged.

6. Sensitivity of Thermal Conductivity to χ

Compared to the MoS₂ and SiO₂ interatomic potentials, which are parameterized based on specific crystal structures and material properties, the LJ interaction parameters are determined by the simplistic Lorentz-Berthelot mixing rules (see section 2). Here, we scale the ϵ values by χ to test the sensitivity of the in-plane thermal conductivity of supported 1L MoS₂ to this interaction parameter. We perform five simulations per χ (except for $\chi = 1$, which uses results from the main text) using the same methodology described in section 5 and section II of the main text. The results are below in Fig. S4(a). Unsurprisingly, a weaker interaction strength (χ < 1) leads to a higher thermal conductivity, whereas the opposite happens with a stronger interaction strength (χ > 1). It is important to understand these results in the context of our comparison to suspended MoS₂. Figure S4(b) illustrates how the percent reduction in thermal conductivity from suspended MoS₂ to supported changes with χ . We see that the range for the reduction is between 65% and 80% over all χ . Ultimately, no matter what the true χ value is, the supported MoS₂ thermal conductivity reduction remains comparable.

Figure S4: (a) Thermal conductivity of supported 1L MoS₂ with respect to the LJ scaling factor, χ , which modulates the interaction strength between MoS₂ and a-SiO₂. The black line shows an analytic fit to the total in-plane thermal conductivity from our simulations. (b) The percent reduction of supported 1L MoS₂ thermal conductivity from suspended 1L MoS₂ calculations. This highlights how, even over a range of χ , the total in-plane thermal conductivity is still reduced significantly (65% to 80%).

7. Vibrational Density of States (VDOS)

The calculations of the VDOS are based on the velocity autocorrelation function (VACF) [35] which states that the Fourier transform (specifically discrete cosine transform) of the VACF can directly give the VDOS. This can be written as:

$$VDOS_{j}(\omega) = \int_{-\infty}^{\infty} \cos(\omega t) VACF_{jj}(t) dt$$
 (S4)

where the subscript *j* denotes a Cartesian direction. Here, we define the total VACF as the mass-weighted sum of each atomic VACF [36], which can be written as:

$$VACF_{jk}(t) = \sum_{i=1}^{N} \langle m_i \mathbf{v}_i^j(t) \cdot \mathbf{v}_i^k(0) \rangle$$
 (S5)

where j and k are Cartesian directions, i is the atom index, m and v are the mass and velocity of atom i, and N is the total number of atoms. Since the integration of the VDOS equals the total number of degrees of freedom for a system (3N), we normalize the VDOS to meet this criterion. This normalization looks like:

$$\int_0^\infty \frac{\text{VDOS}_j(\omega)}{2\pi} d\omega = 3N.$$
 (S6)

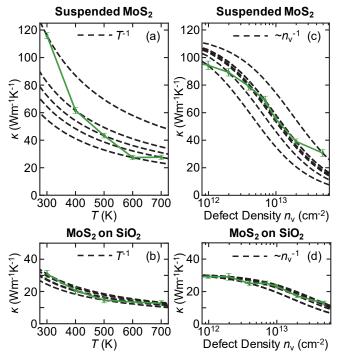
In Figs. 2(a) and 2(b) in the main text, we also normalize by system volume so MoS₂ and SiO₂ can be plotted on the same scale. Finally, atom type decompositions of the VDOS simply come from grouping this calculation by atom type. The VDOS calculation was implemented and run in GPUMD.

8. Kinetic Theory Approximation - Temperature and Defect Density Dependence

Often used for crystalline materials, the kinetic formula can be used to understand and compute the thermal conductivity. The expression for thermal conductivity can be written as [37]:

$$\kappa = \frac{1}{d} C \nu \lambda_{\rm ph} \tag{S7}$$

where d is the dimension of the system, C is the heat capacity per unit volume, v is the average particle speed, and λ_{ph} is the phonon mean free path. At high temperatures (i.e. above the Debye temperature, θ_D), the heat capacity term transitions to the constant, Dulong-Petit Law value of $C = 3nk_B$ [38], where n is the sample's atom number density, and k_B is the Boltzmann constant. Three-phonon Umklapp scattering is proportional to the temperature, meaning $\lambda_{ph} \propto T^1$. As a result, the thermal conductivity at high temperature $(T > \theta_D)$ has the relationship $\kappa \propto T^1$ [37]. However, the rate of decline has been shown to hold a more general trend of $\kappa \propto T^x$ where 1 < x < 2 [38]. The exponent incorporates the balance between the three- and four-phonon anharmonic scattering terms (x increases with increasing higher order process contribution) [39]. For impure or defective materials, there is an additional scattering term that must be included in λ_{ph} along with the phonon-phonon scattering term. The phonon-phonon and defect scattering effects can be combined using Matthiessen's rule. The defect (vacancy) mean free path can be written as $\lambda_v \propto \sim n_v^{-1}$ [37], where n_v is vacancy density.


9. Temperature and Defect Density Fitting

Figures 3(a) and 3(b) in the main text each show two different temperature curves from the kinetic theory approximation: $\kappa \propto T^{-1}$ and $\kappa \propto T^{-x}$. This section will describe how these lines are created. For $\kappa \propto T^{-1}$, we plot $\kappa = \alpha T^{-1}$ where $\alpha = \kappa_{\text{MD}}(T = 300 \text{ K}) \cdot 300 \text{ K}$ in units of Wm⁻¹, with κ_{MD} being the molecular dynamics (MD)-calculated thermal conductivity. This means that $\kappa(T = 300 \text{K}) = \kappa_{\text{MD}}(T = 300 \text{K})$. This is arbitrarily chosen to aesthetically capture the T^{-1} dependence. All possible choices can be seen in Figs. S5(a) and S5(b), where each line chooses α based on a different temperature between 300 K and 700 K. It also shows that, no matter the choice in α , the MD-calculated thermal conductivity of MoS₂ decays faster than T^{-1} . For $\kappa \propto T^{-x}$, we perform a non-linear, least squares fit using the MD-calculated MoS₂ thermal conductivity results. The fit equation was $\kappa = \alpha T^{-x}$, with α and κ as fitting parameters. The final parameters of the fit for suspended 1L MoS₂ were $\alpha = 7.37 \times 10^6 \text{ Wm}^{-1}\text{K}^{-(1+x)}$ and $\kappa = 1.9413$ and were $\kappa = 2.78 \times 10^4 \text{ Wm}^{-1}\text{K}^{-(1+x)}$ and $\kappa = 1.2$ for supported 1L MoS₂.

Figures 4(a) and 4(b) in the main text show curves for $\kappa \propto \sim n_v^{-1}$, where n_v is vacancy (defect) density. This curve is based on the vacancy density's effect on the total phonon scattering rate; however, Umklapp scattering must also be accounted for in the calculation of the total phonon scattering rate. The total scattering rate can be written as $\tau^{-1} = \tau_U^{-1} + \tau_v^{-1}$ where τ_U^{-1} is the Umklapp scattering rate and τ_v^{-1} is the vacancy scattering rate. Since only n_v is changing, we assume the Umklapp scattering rate is constant. We

also know that $\kappa \propto \tau$ (because $\lambda_{ph} = v\tau$) allowing us to write our fitting equation as $\kappa = (\eta + \beta n_v)^{-1}$ with η taking the place of the terms related to Umklapp mean scattering time and β taking the place of all constants in the vacancy mean scattering time term.

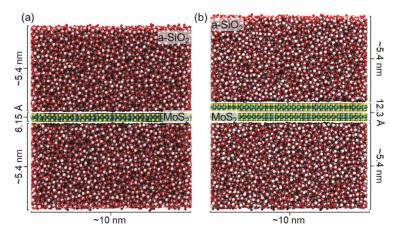

To determine the constant η , we first consider the case when $n_v = 0$. This gives the direct result of $\kappa(n_v = 0) = \eta^{-1} = \kappa_{\text{MD}}(T = 300 \text{ K}, n_v = 0)$ with η in units of W⁻¹m·K. Solving for β we get the expression $\beta = (1-\kappa\eta)\cdot(\kappa n_v)^{-1}$ with β in units of m³K·W⁻¹. Like the T^{-1} plot, we must choose a parameter, here n_v , based on our current available results. In Figs. 4(a) and 4(b) in the main text, we chose $n_v \approx 7 \times 10^{12} \text{ cm}^{-2}$ to define our β term. Figs. S5(c) and S5(d) show all possible $\kappa \propto \sim n_v^{-1}$ curves from our MD results. We can see that, no matter the choice in n_v , the slope is effectively the same meaning our conclusion from the main text remains the same. The decay in thermal conductivity with defect density is what we expect based on kinetic theory.

Figure S5: Possible fits to kinetic theory curves for (a) suspended and (b) supported 1L MoS₂ thermal conductivity vs. temperature as well as fits to kinetic theory curves for (c) suspended and (d) supported 1L MoS₂ thermal conductivity vs. sulfur vacancy density. Each curve is fit to a calculated κ_{MD} value at a specific temperature or defect density. The plots illustrate how each of the lines look different but the rate of change of thermal conductivity is relatively similar amongst all choices of fitting points.

10. Encased Monolayer and Bilayer MoS₂ Structures

For encased MoS₂ simulations, an additional structure is created. Using the original MoS₂ on a-SiO₂ structure as a base, we placed a copy of the a-SiO₂ block \sim 3 Å above the MoS₂. Using the same check as the final step of section 4, we verify the structure's stability and obtain our final encased monolayer and encased bilayer structures, as seen in Figs. S6(a) and S6(b), respectively. The final monolayer structure has 89,874 total atoms while the final bilayer structure has 93,330 total atoms. These systems required \sim 3× the computation time per time step as the supported MoS₂ structure.

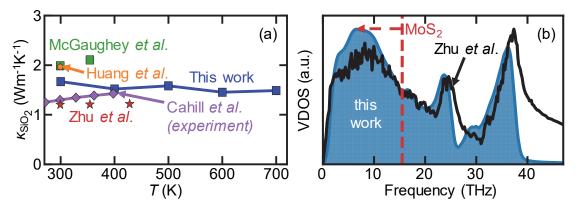


Figure S6: SiO₂-encased (a) monolayer MoS₂ and (b) bilayer MoS₂. There are in-plane periodic boundary conditions and there is a vacuum in the out-of-plane direction.

11. Amorphous SiO₂ – Thermal Conductivity and Vibrational Density of States Benchmarks

Because all supported MoS₂ simulations use the same a-SiO₂ substrate, we benchmark some of its properties against other studies to determine differences in our systems. First, we calculate the a-SiO₂ substrate thermal conductivity. This computation is completed with the Green-Kubo equilibrium MD (EMD) method [40] instead of the HNEMD method. Because the thermal conductivity of a-SiO₂ is small (order of ~1 Wm⁻¹K⁻¹), reliable thermal conductivities can be extracted without a very long EMD run time, and so, instead of tuning the F_e parameter, it is faster to extract thermal conductivity with the EMD method.

The a-SiO₂ EMD simulations use a 0.5 fs time step, the same as in the supported MoS_2 simulations. Procedurally, we first run in the *NPT* ensemble for 0.25 ns at the desired temperature. Next, we switch to the *NVE* for another 0.25 ns but apply a Langevin thermostat [41] to hold the desired temperature. Under the same conditions, we run an additional 5 ns, this time sampling the heat flux every 5 fs for the EMD method.

Figure S7: (a) Thermal conductivity of a-SiO₂ compared to values in literature. (b) Comparison of the VDOS of a-SiO₂ with Zhu *et al.*'s work as they used the same Tersoff potential. The curves are normalized by their respective peak VDOS values. The red dotted line denotes highest frequency modes for MoS₂.

Our a-SiO₂ temperature dependent thermal conductivity, as well as other works in literature, can be seen in Fig. S7(a). Zhu *et al.* [42] uses the same SiO₂ Tersoff potential [30] as our work, but we find that our values are \sim 0.3 Wm⁻¹K⁻¹ larger than their study. However, we do find that reasonable agreement with Cahill *et al.*'s experimental measurements [43]. From Zhu *et al.*, we note there is no temperature dependence, which agrees with our results. Because the thermal conductivity of amorphous materials tends to increase monotonically with temperature, we expect our overestimation of the thermal conductivity in a-SiO₂, compared to experiment, to be less severe at higher temperatures as our calculations show no

temperature dependence. We also show MD calculations from McGaughey *et al.* [44] and Huang *et al.* [45] who report MD-calculated thermal conductivities of $\kappa = \sim 2 \text{ Wm}^{-1}\text{K}^{-1}$. Notably, both studies used the BKS potential [46, 47] instead of the Tersoff potential.

We also compare our a-SiO₂ VDOS to literature to verify another thermally-relevant property. This behavior is important, as the vibrational states in a-SiO₂ will interact with MoS₂ and influence our supported MoS₂ thermal conductivity calculations. Figure S7(b) shows the total VDOS for our and Zhu's [42] a-SiO₂ with each curve normalized by their respective maximums. Qualitatively, these plots are similar at lower frequencies (< 20 THz) but peaks from Zhu's work are shifted to slightly higher frequencies. The discrepancies may come from differences in structure. The red dashed line in Fig. S7(b) denotes the highest frequency at which MoS₂ has any phonons. To the left of this line, where most interactions with MoS₂ will occur, the VDOS are in reasonable agreement and so our a-SiO₂ is well-behaved.

Supplementary References:

- [1] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy *ACS Nano* **8** 986-93
- [2] Sgouros A P, Konstantopoulou A, Kalosakas G and Sigalas M M 2019 Temperature profiles and thermal conductivities of nanostructured transition metal dichalcogenides *International Journal of Heat and Mass Transfer* **140** 579-86
- [3] Ding Z, Jiang J-W, Pei Q-X and Zhang Y-W 2015 In-plane and cross-plane thermal conductivities of molybdenum disulfide *Nanotechnology* **26** 065703
- [4] Cai Y, Lan J, Zhang G and Zhang Y-W 2014 Lattice vibrational modes and phonon thermal conductivity of monolayer MoS₂ *Physical Review B* **89** 035438
- [5] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Phonon thermal conductivity of monolayer MoS₂: A comparison with single layer graphene *Applied Physics Letters* **105** 103902
- [6] Patil S B, Sankeshwar N S and Mulimani B G 2019 Lattice thermal conduction in suspended molybdenum disulfide monolayers with defects *Journal of Physics and Chemistry of Solids* 129 31-40
- [7] Saha D and Mahapatra S 2016 Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS₂ *Physica E: Low-dimensional Systems and Nanostructures* **83** 455-60
- [8] Su J, Liu Z-T, Feng L-P and Li N 2015 Effect of temperature on thermal properties of monolayer MoS₂ sheet *Journal of Alloys and Compounds* **622** 777-82
- [9] Krishnamoorthy A, Rajak P, Norouzzadeh P, Singh D J, Kalia R K, Nakano A and Vashishta P 2019 Thermal conductivity of MoS₂ monolayers from molecular dynamics simulations *AIP Advances* 9 035042
- [10] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 Thermal conductivity of monolayer MoS₂, MoSe₂, and WS₂: interplay of mass effect, interatomic bonding and anharmonicity *RSC Advances* **6** 5767-73
- [11] Li X, Zhang J, Puretzky A A, Yoshimura A, Sang X, Cui Q, Li Y, Liang L, Ghosh A W, Zhao H, Unocic R R, Meunier V, Rouleau C M, Sumpter B G, Geohegan D B and Xiao K 2019 Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS₂ ACS Nano 13 2481-9
- [12] Gu X and Zhao C Y 2019 Thermal conductivity of single-layer MoS_{2(1-x)}Se_{2x} alloys from molecular dynamics simulations with a machine-learning-based interatomic potential *Computational Materials Science* **165** 74-81
- [13] Mobaraki A, Sevik C, Yapicioglu H, Çakır D and Gülseren O 2019 Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application *Physical Review B* **100** 035402

- [14] Zhang J, Li X, Xiao K, Sumpter B G, Ghosh A W and Liang L 2019 The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides *Journal of Physics: Condensed Matter* **32** 025306
- [15] Lin C, Chen X and Zou X 2019 Phonon–Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS₂ ACS Applied Materials & Interfaces 11 25547-55
- [16] Kandemir A, Yapicioglu H, Kinaci A, Çağın T and Sevik C 2016 Thermal transport properties of MoS₂ and MoSe₂ monolayers *Nanotechnology* **27** 055703
- [17] Gu X and Yang R 2014 Phonon transport in single-layer transition metal dichalcogenides: A first-principles study *Applied Physics Letters* **105** 131903
- [18] Hong Y, Zhang J and Zeng X C 2016 Thermal Conductivity of Monolayer MoSe₂ and MoS₂ *The Journal of Physical Chemistry C* **120** 26067-75
- [19] Li W, Carrete J and Mingo N 2013 Thermal conductivity and phonon linewidths of monolayer MoS₂ from first principles *Applied Physics Letters* **103** 253103
- [20] Jin Z, Liao Q, Fang H, Liu Z, Liu W, Ding Z, Luo T and Yang N 2015 A Revisit to High Thermoelectric Performance of Single-layer MoS₂ *Scientific Reports* **5** 18342
- [21] Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Barati Farimani A, Komsa H-P, Krasheninnikov A V, Pop E and Ala-Nissila T 2019 Thermal transport in MoS₂ from molecular dynamics using different empirical potentials *Physical Review B* **99** 054303
- [22] Gu X, Li B and Yang R 2016 Layer thickness-dependent phonon properties and thermal conductivity of MoS₂ *Journal of Applied Physics* **119** 085106
- [23] Cepellotti A and Marzari N 2017 Boltzmann Transport in Nanostructures as a Friction Effect *Nano Letters* 17 4675-82
- [24] Polanco C A, Pandey T, Berlijn T and Lindsay L 2020 Defect-limited thermal conductivity in MoS₂ *Physical Review Materials* **4** 014004
- [25] Zhao Y, Dai Z, Zhang C, Lian C, Zeng S, Li G, Meng S and Ni J 2018 Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS₂ New Journal of Physics **20** 043009
- [26] Wu X, Yang N and Luo T 2015 Unusual isotope effect on thermal transport of single layer molybdenum disulphide *Applied Physics Letters* **107** 191907
- [27] Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo–S systems *Physical Review B* **79** 245110
- [28] Liang T, Phillpot S R and Sinnott S B 2012 Erratum: Parametrization of a reactive many-body potential for Mo–S systems [Phys. Rev. B 79, 245110 (2009)] *Physical Review B* **85** 199903
- [29] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M 1992 UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations *Journal of the American Chemical Society* **114** 10024-35
- [30] Munetoh S, Motooka T, Moriguchi K and Shintani A 2007 Interatomic potential for Si-O systems using Tersoff parameterization *Computational Materials Science* **39** 334-9
- [31] Fan Z, Chen W, Vierimaa V and Harju A 2017 Efficient molecular dynamics simulations with many-body potentials on graphics processing units *Computer Physics Communications* **218** 10-6
- [32] Fan Z, Siro T and Harju A 2013 Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations *Computer Physics Communications* **184** 1414-25
- [33] Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics *Journal of Computational Physics* **117** 1-19
- [34] Tuckerman M E 2010 Statistical mechanics: theory and molecular simulation (Oxford: Oxford University Press)
- [35] Dickey J M and Paskin A 1969 Computer Simulation of the Lattice Dynamics of Solids *Physical Review* **188** 1407-18
- [36] Lin S-T, Blanco M and III W A G 2003 The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids *The Journal of Chemical Physics* **119** 11792-805

- [37] Ziman J M 1960 *Electrons and Phonons; The Theory of Transport Phenomena in Solids* (Oxford: Clarendon Press)
- [38] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College)
- [39] Herring C 1954 Role of Low-Energy Phonons in Thermal Conduction *Physical Review* 95 954-65
- [40] Evans D J and Morriss G 2008 Statistical Mechanics of Nonequilibrium Liquids (Cambridge: Cambridge University Press)
- [41] Bussi G and Parrinello M 2007 Accurate sampling using Langevin dynamics *Physical Review E* **75** 056707
- [42] Zhu W, Zheng G, Cao S and He H 2018 Thermal conductivity of amorphous SiO₂ thin film: A molecular dynamics study *Scientific Reports* **8** 10537
- [43] Cahill D G and Allen T H 1994 Thermal conductivity of sputtered and evaporated SiO₂ and TiO₂ optical coatings *Applied Physics Letters* **65** 309-11
- [44] McGaughey A J H and Kaviany M 2004 Thermal conductivity decomposition and analysis using molecular dynamics simulations: Part II. Complex silica structures *International Journal of Heat and Mass Transfer* **47** 1799-816
- [45] Huang Z, Tang Z, Yu J and Bai S 2009 Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation *Physica B: Condensed Matter* **404** 1790-3
- [46] van Beest B W H, Kramer G J and van Santen R A 1990 Force fields for silicas and aluminophosphates based on ab *initio* calculations *Physical Review Letters* **64** 1955-8
- [47] Kramer G J, Farragher N P, van Beest B W H and van Santen R A 1991 Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab *initio* calculations *Physical Review B* **43** 5068-80