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Ballistic to diffusive crossover of heat flow in
graphene ribbons
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Zhun-Yong Ong1,3, Irena Knezevic4 & Eric Pop1,2,5

Heat flow in nanomaterials is an important area of study, with both fundamental and

technological implications. However, little is known about heat flow in two-dimensional

devices or interconnects with dimensions comparable to the phonon mean free path. Here we

find that short, quarter-micron graphene samples reach B35% of the ballistic thermal

conductance limit up to room temperature, enabled by the relatively large phonon mean free

path (B100 nm) in substrate-supported graphene. In contrast, patterning similar samples

into nanoribbons leads to a diffusive heat-flow regime that is controlled by ribbon width and

edge disorder. In the edge-controlled regime, the graphene nanoribbon thermal conductivity

scales with width approximately as BW1.8±0.3, being about 100 W m� 1 K� 1 in 65-nm-wide

graphene nanoribbons, at room temperature. These results show how manipulation of

two-dimensional device dimensions and edges can be used to achieve full control of their

heat-carrying properties, approaching fundamentally limited upper or lower bounds.
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T
he thermal properties of graphene are derived from those of
graphite and are similarly anisotropic. The in-plane
thermal conductivity of isolated graphene is high,

42,000 W m� 1 K� 1 at room temperature, due to the strong sp2

bonding and relatively small mass of carbon atoms1–3. Heat flow in
the cross-plane direction is nearly a 1,000 times weaker, limited by
van der Waals interactions with the environment (for graphene)4

or between graphene sheets (for graphite)1,2. Recent studies have
suggested that the thermal conductivity of graphene is altered
when in contact with a substrate through the interaction between
vibrational modes (phonons) of graphene and those of the
substrate5–8. However, an understanding of heat-flow properties
in nanometre-scale samples of graphene (or any other two-
dimensional (2D) materials) is currently lacking.

By comparison, most graphene studies have focused on its
electrical properties when confined to scales on the order of the
carrier mean free path (mfp)9–14. For example, these studies have
found that ‘short’ devices exhibit near-ballistic behaviour9 and
Fabry–Perot wave interference12, whereas ‘narrow’ nanoribbons
display a steep reduction of charge-carrier mobility11,13. Pre-
vious studies do exist for heat flow in three-dimensional (3D)
structures, such as nanowires and nanoscale films. For instance,
ballistic heat flow was observed in suspended GaAs bridges15 and
silicon nitride membranes16 at low temperatures, of the order 1 K.
Conversely, suppression of thermal conductivity due to strong
edge-scattering effects was noted in narrow and rough silicon
nanowires17,18, up to room temperature. Yet, such effects have
not been studied in 2D materials like graphene, and ballistic heat
conduction has not been previously observed near room
temperature in any material.

In this work we find that the thermal properties of graphene
can be tuned in nanoscale devices comparable in size to the
intrinsic phonon mfp. (By ‘intrinsic’ thermal conductivity or
phonon mfp, we refer to that in large samples without edge
effects, typically limited by phonon–phonon scattering in
suspended graphene3 and by substrate scattering in supported
graphene6; here lE100 nm at room temperature, as we will
show.) We find that the thermal conductance of ‘short’ quarter-
micron graphene devices reaches up to 35% of theoretical ballistic
upper limits19. However, the thermal conductivity of ‘narrow’
graphene nanoribbons (GNRs) is greatly reduced compared with
that of ‘large’ graphene samples. Importantly, we uncover that
nanoengineering the GNR dimensions and edges is responsible
for altering the effective phonon mfp, shifting heat flow from
quasi-ballistic to diffusive regimes. These findings are highly
relevant for all nanoscale graphene devices and interconnects,
also suggesting new avenues to manipulate thermal transport in
2D and quasi-one-dimensional systems.

Results
Test structures and measurements. Figure 1 illustrates several of
our experimental test structures, showing graphene and GNR
arrays supported on a SiO2/Si substrate (see Methods and
Supplementary Note S1). Long, parallel metal lines serve as heater
and thermometer sensors5,20, electrically insulated from the
graphene by a thin SiO2 layer. We perform heat-flow
measurements from 20 to 300 K on unpatterned graphene
(Fig. 1a), control samples with the graphene etched off (Fig. 1b)
and arrays of GNR widths WE130, 85, 65 and 45 nm (Fig. 1c,d
and Supplementary Fig. S2). Figure 1f shows the Raman spectra
of representative samples, with no discernible D peak (no defects)
in unpatterned graphene4 and a D/G peak ratio of GNRs
consistent with the presence of edge disorder14,21.

The measurement proceeds as follows. We pass a heating
current through one metal line, which sets up a temperature

gradient across the sample, and we monitor changes in electrical
resistance of the opposite electrode (see Methods and Supple-
mentary Note S2). Both electrode resistances are calibrated over
the full temperature range for each sample, allowing us to convert
measured changes of resistance into changes of sensor tempe-
rature DTS, as a function of heater power PH (Supplementary
Fig. S5). We also perform measurements after removing the
exposed graphene with an oxygen plasma etch (Fig. 1b). This
allows us to obtain the thermal properties of the parallel heat-flow
path through the contacts, supporting SiO2 and substrate
(Supplementary Figs S4 and S8). As a check on our method, we
find the thermal conductivity of our SiO2 layer in excellent
agreement with well-known data from the literature (Supplemen-
tary Note S4 and Supplementary Fig. S8) over the full
temperature range. As a result of this exercise, we were also
able to fit the thermal resistance of the SiO2–Si interface (Supple-
mentary Fig. S8c and Supplementary Eq. S1), generating one of
the few available data sets on this quantity, to our knowledge.

To extract the thermal properties of our samples, we use 3D
simulations of the structures with dimensions obtained from
measurements by scanning electron microscopy and atomic force
microscopy, as shown in Fig. 1d,e and Supplementary Fig. S7.
The model matches the measured and simulated DTS and PH,
fitting the thermal conductance G between the heater and the
thermometer. The 3D simulations automatically include all
known contact-resistance effects, including those of the
graphene–SiO2 and SiO2–metal interfaces, matched against data
from the literature and our control experiments (Supplementary
Note S3). To provide some simple estimates, the contact thermal
resistance (per electrode width) is RCE0.7 m. KW� 1, the ‘wide’
unpatterned graphene thermal resistance is RGE2.5 m. KW� 1

and that of the GNR arrays is in the range RGNRE4–32 m. KW� 1

(from widest to narrowest). The graphene is not patterned under
the electrodes; thus, the contact resistance remains the same for
all samples. The 3D simulations also account for heat spreading
through the underlying SiO2, and our error bars include various
uncertainties in all parameters (Supplementary Note S6).

Figure 2a displays in-plane thermal conductance per area
(G/A) for our GNRs, for one of our unpatterned ‘short but wide’
samples (LE260 nm, WE12 mm), and for the ‘large’ sample
(LE10 mm) of Seol et al.6 Here A is the cross-sectional area of
heat flow, A¼WH, where W is the width and H¼ 0.335 nm is
the thickness of the graphene samples. At the same time Fig. 3
displays schematics of the size effects and the three transport
regimes expected, corresponding to the samples measured in
Fig. 2. Figure 2a also shows the theoretical ballistic thermal
conductance of graphene22–24, Gball/A, calculated with the
approach listed in Supplementary Note S9. By comparison, our
‘short’ sample (schematic in Fig. 3b) has a thermal conductance
B35% of Gball/A at 200 K and B30% at room temperature,
indicating a regime of quasi-ballistic phonon transport (other
similar samples are shown in Supplementary Fig. S9d). In
contrast, the ‘large’ sample from Seol et al.6 (schematic in Fig. 3a)
has a conductance per cross-sectional area o2% of the ballistic
limit, being in the diffusive transport regime as expected
(W, Lcl).

Length dependence of thermal conductivity. We recall that in
the ballistic limit (Lool), the conductance, rather than the
conductivity, approaches a constant at a given temperature22–24,
Gball(T). Nevertheless, the thermal conductivity is the parameter
typically used for calculating heat transport in practice, and for
comparing different materials and systems. Thus, the well-known
relationship k¼ (G/A)L imposes the conductivity k to become a
function of length in the ballistic regime and to decrease as L is

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2755

2 NATURE COMMUNICATIONS | 4:1734 | DOI: 10.1038/ncomms2755 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


reduced. This situation becomes evident when we plot the
thermal conductivity in Fig. 2b, finding kE320 W m� 1 K� 1 for
our ‘short’ and wide samples at room temperature (schematic
Fig. 3b), almost a factor of two lower than the large graphene6

(schematic Fig. 3a). We note that both unpatterned samples here
and in Seol et al.6 were supported by SiO2, showed no discernible
defects in the Raman spectra and the measurements were
repeated over three samples (Supplementary Note S5 and
Supplementary Fig. S9), with similar results obtained each time.

The transition of 2D thermal conductivity from diffusive to
ballistic can be captured through simple models25, similar to
the apparent mobility reduction during quasi-ballistic charge
transport observed in short-channel transistors26,27:

k Lð Þ¼
X

p

A
LGp;ball

þ 1
kp;diff

 !� 1

� Gball

A
1
L
þ 1
ðp=2Þl
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The first equality is a ‘three-colour’ model with p the phonon
mode (longitudinal acoustic; transverse; flexural), Gp,ball

calculated using the appropriate dispersion19 and
P

kp,diff¼ kdiff

the diffusive thermal conductivity (B600 W m� 1 K� 1 at
300 K)6. A simpler ‘gray’ approximation can also be obtained
by dropping the p index, k(L)E[A/(LGball)þ 1/kdiff]� 1, where
Gball/AE4.2� 109 W K� 1 m� 2 at room temperature19 (see
Supplementary Note S9). The second expression in equation 1
is a Landauer-like model25,28, with p/2 accounting for angle
averaging29 in 2D to obtain the phonon backscattering mfp. For
convenience, we note that the ballistic thermal conductance of
graphene can be approximated analytically as Gball/AE
[1/(4.4� 105 T1.68)þ 1/(1.2� 1010)]� 1 W K� 1 m� 2 over the

temperature range 1–1,000 K, as a fit to full numerical
calculations (Supplementary Fig. S16).

We compare the simple models in equation 1 with the
experiments in Fig. 2c and find good agreement over a wide
temperature range. The comparison also yields our first estimate
of the intrinsic phonon mfp in SiO2-supported graphene,
lE(2/p)kdiff/(Gball/A)E90 nm at 300 K and 115 nm at 150 K.
(The same argument estimates an intrinsic phonon mfp lE300–
600 nm in freely suspended graphene at 300 K, if a thermal
conductivity 2,000–4,000 W m� 1 K� 1 is used1–3.) This phonon
mfp is the key length scale which determines when the thermal
conductivity of a sample becomes a function of its dimensions, in
other words when L and W become comparable to l. On the basis
of Fig. 2c, we note that quasi-ballistic heat-flow effects should
become non-negligible in all SiO2-supported graphene devices
shorter than B1 mm.

Width dependence of thermal conductivity. We now turn to the
width dependence of heat flow in narrow GNRs. Our experimental
data in Fig. 2b,d show a clear decrease of thermal conductivity as
the width W is reduced to a size regime comparable to the intrinsic
phonon mfp. For instance, at room temperature kE230, 170, 100
and 80 W m� 1 K� 1 for GNRs of WE130, 85, 65 and 45 nm,
respectively, and same LE260 nm. To understand this trend, we
consider k limited by phonon scattering with edge disorder30,31

through a simple empirical model with a functional form suggested
by previous work on rough nanowires32,33 and GNR mobility34:

keff W; Lð Þ � 1
c

D
W

� �n
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Here D is the root-mean-square (r.m.s.) edge roughness (Fig. 3c)
and k(L) is given by equation 1. The solid lines in Fig. 2d show
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Figure 1 | Measurement of heat flow in graphene ribbons. (a) Scanning electron microscopy image of parallel heater and sensor metal lines with

B260 nm separation, on top of graphene sample (colourized for emphasis). A thin SiO2 layer under the metal lines provides electrical insulation and

thermal contact with the graphene beneath (see Methods and Supplementary Note S1). (b) Similar sample after graphene etch, serving as control

measurement for heat flow through contacts and SiO2/Si underlayers. (c) Heater and sensor lines across array of graphene nanoribbons (GNRs).

(d) Magnified portion of array with GNR widths B65 nm; inset shows atomic force microscopy image of GNRs. Scale bars of a–d, 2, 1, 2 and 1mm,

respectively. (e) 3D simulation of experimental structure, showing temperature distribution with current applied through heater line. (f) Raman spectra of

unpatterned graphene sample (bottom curve) and GNRs (upper curves, offset for clarity). Inset shows scaling of Raman D to G peak area versus GNR

width, consistent with the enhanced role of edge disorder in narrower GNRs14,21,35.
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good agreement with our GNR data (LE260 nm) using
D¼ 0.6 nm and a best-fit exponent n¼ 1.8±0.3. The parameter
c¼ 0.04 W m� 1 K� 1 can be used to fit the room-temperature
data set and additional fitting discussion is provided in the
Supplementary Note S9. (Note that we cannot assign an overly
great physical meaning to the parameter c, because the empirical
model can only fit Dn/c, not D or c independently). The simple
model appears to be a good approximation in a regime with
DooW, where the data presented here were fitted. However, it is
likely that this simple functional dependence would change in a
situation with extreme edge roughness18, where the roughness
correlation length (which cannot be directly quantified here) could
also have an important role.

Nevertheless, the nearly W-squared dependence of thermal
conductivity in narrow GNRs with edge roughness is consistent
with previous findings for rough nanowires32,33, and also similar to
that suggested by theoretical studies of GNR electron mobility34.
The precise scaling with D is ostensibly more complex30,31 than
can be captured in a simple model, as it depends on details of the
phonon dispersion, the phonon wave vector and indirectly on

temperature. However, the D estimated from the simple model
presented above is similar to that from extensive numerical
simulations below, and to that measured by transmission electron
microscopy on GNRs prepared under similar conditions35. Thus,
the simple expressions given above can be taken as a practical
model for heat flow in substrate-supported GNRs with edge
roughness (DooW) over a wide range of dimensions,
corresponding to all size regimes in Fig. 3.

Discussion
We first revisit the effects of measurement contacts and how they
relate to the interpretation of sample length in the quasi-ballistic
heat-flow regime. As in studies of quasi-ballistic electrical
transport26,27, we defined the ‘channel length’ L as the inside
edge-to-edge distance between the heater and thermometer
electrodes (Fig. 3c). Simple ballistic theory assumes contacts
with an infinite number of modes and instant thermalization of
phonons at the edges of the contacts. The former is well
approximated here by electrodes two hundred times thicker than
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Figure 2 | Thermal conduction scaling in GNRs. (a) Thermal conductance per cross-sectional area (G/A) versus temperature for our GNRs

(LE260 nm, W as listed, see Fig. 3c), a ‘short’ unpatterned sample (LE260 nm, WE12mm, see Fig. 3b) and a ‘large’ sample from Seol et al.6

(LE10 mm, WE2.4mm, see Fig. 3a). The short but wide graphene sample attains up to B35% of the theoretical ballistic heat-flow limit22–24

(also see Supplementary Fig. S9). (b) Thermal conductivity for the same samples as in a (also see Supplementary Fig. S10). (c) Thermal conductivity

reduction with length for ‘wide’ samples (Wcl), compared with the ballistic limit (kball¼GballL/A) at several temperatures. Symbols are data for our

‘short’ unpatterned graphene samples (Figs 1a and 3b), and ‘large’ samples of Seol et al.6 (Fig. 3a). Solid lines are model from equation 1. (d) Thermal

conductivity reduction with width for GNRs, all with LE260 nm (Figs 1c,d and 3c). Solid symbols are experimental data from b, open symbols are

interpolations for the listed temperature. Lines are fitted model from equation 2, revealing a scaling as BW1.8±0.3 in the edge-limited regime. The thermal

conductivity of plasma-etched GNRs in this work appears slightly lower than that estimated for GNRs from unzipped nanotubes13 at a given width,

consistent with a stronger effect of edge disorder35. Also see Supplementary Fig. S11.
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the graphene sheet; however, phonons may travel some distance
below the contacts before equilibrating. The classical, continuum
analogue of this aspect is represented by the thermal transfer
length (LT) of heat flow from the graphene into the contacts3,36,
which is automatically taken into account in our 3D simulations
(Fig. 1e). However, a subcontinuum perspective37 reveals that
graphene phonons only thermally equilibrate after travelling one
mfp below the contacts. Previous measurements of oxide-encased
graphene5 had estimated a thermal conductivity kenc¼ 50–
100 W m� 1 K� 1, which suggests a phonon mfp lenc¼ (2kenc/
p)/(Gball/A)E8–15 nm under the contacts. This adds at most 12%
to our assumption of edge-to-edge sample length (here
LE260 nm), a small uncertainty which is comparable to the
sample-to-sample variation from fabrication, and to the size of
the symbols in Fig. 2c. (The relatively low thermal conductivity of
encased monolayer graphene5 is due to scattering with the SiO2

sandwich, although some graphene damage from the SiO2

evaporation38 on top is also possible.)
To gain deeper insight into our experimental results, we

employ a numerical solution of the Boltzmann transport
equation (BTE) with a complete phonon dispersion31,39. Our
approach is similar to previous work6,40, but accounting for
quasi-ballistic phonon propagation and edge disorder scattering
in short and narrow GNRs, respectively (see Methods and
Supplementary Notes S7 and S8). Figure 4a finds good agreement
of thermal conductivity between our measurements and the BTE
model across all samples and temperatures. We obtained the best
fit for GNRs of width 130 and 85 nm with r.m.s. edge roughness
D¼ 0.25 and 0.3 nm, where the gray bands in Fig. 4a correspond
to ±5% variation around these values. For GNRs of widths 65
and 45 nm, the gray bands correspond to edge roughness ranges
D¼ 0.35–0.5 and 0.5–1 nm, respectively. We note that unlike the
empirical model of equation 2, the best-fit BTE simulations do
not use a unique value of edge roughness D. This could indicate
some natural sample-to-sample variation in edge roughness
from the fabrication conditions, but it could also be due to
certain edge-scattering physics (such as edge-roughness

correlation18 and phonon localization41), which are not yet
captured by the BTE model.

Figure 4b examines the scaling of mfps by phonon mode,
finding they are strongly reduced as the GNR width decreases
below B200 nm, similar to the thermal conductivity in Fig. 2d.
The mfp for each phonon mode is calculated as an average over
the entire frequency spectrum, weighted by the frequency-
dependent heat capacity and group velocity (Supplementary
Eq. S19). We note that longitudinal acoustic (LA) and transverse
(TA) modes, which have larger intrinsic mfps, are more strongly
affected by the GNR edge disorder. On the other hand, flexural
acoustic modes (ZA) are predominantly limited by substrate
scattering and consequently suffer less from edge disorder,
consistently with recent findings from molecular dynamics
simulations7,8.

Increasing edge disorder reduces phonon mfps (Supplementary
Fig. S15d), and the thermal conductivity is expected to scale as
shown in Fig. 4c. In the BTE model, the edge-roughness
scattering is captured using a momentum-dependent specularity
parameter (Supplementary Eq. S11), meaning that small wave-
length (large momentum q) phonons are more strongly affected
by line edge roughness. However, as D increases the specularity
parameter saturates, marking a transition to fully diffuse edge
scattering, and also to a regime where substrate scattering begins
to dominate long-wavelength phonons in substrate-supported
samples. This transition cannot be captured by the simplified Dn

dependence in the empirical model of equation 2.
To further illustrate such distinctions, Fig. 4d displays the

energy (frequency o) dependence of phonon mfps for a ‘small’
GNR and a ‘large’ SiO2-supported graphene sample (correspond-
ing to Fig. 3c and 3a, respectively). Low-frequency substrate
scattering (proportional to B1/o2) dominates the large sam-
ple6,7, whereas scattering with edge disorder affects phonons with
wavelengths comparable to, or smaller than, the roughness D (see
Supplementary Note S7). Therefore, larger D can affect more
long-wavelength (low energy) phonons, but only up to DB1 nm,
where the effect of the substrate begins to dominate in the long-
wavelength region (also seen in Fig. 4c). Such a separation of
frequency ranges affected by substrate and edge scattering could
provide an interesting opportunity to tune both the total value
and the spectral components of thermal transport in GNRs, by
controlling the substrate and edge roughness independently.

Finally, it is instructive to examine some similarities and
differences between our findings here versus previous results
regarding size effects on charge-carrier mobility in GNRs with
dimensions comparable to the phonon or electron mfp. The edge-
limited thermal conductivity begins to fall off in GNRs narrower
than B200 nm (Fig. 2d), or twice the intrinsic phonon mfp. A
similar trend was noted for the electrical mobility in GNRs11, but
with a fall off at widths narrower than B40 nm (Supplementary
Fig. S11). These observations are consistent with the intrinsic
electron mfp being several times shorter13,42 than the phonon
mfp in SiO2-supported graphene, that is, B20 nm for the electron
mfp versus nearly B100 nm for the phonon mfp at room
temperature. Thus, edge disorder affects thermal transport more
strongly than charge transport in GNRs of an intermediate width
(40oWo200 nm), an effect that could be used to manipulate
charge and heat flow independently in such nanostructures.

In conclusion, we have investigated heat flow in SiO2-
supported graphene samples of dimensions comparable to the
phonon mfp. Short devices (LBl, corresponding to Fig. 3b
schematic) have thermal conductance much higher than that
previously found in micron-sized samples, reaching 35% of the
ballistic limit at 200 K and 30% (B1.2 GW K� 1 m� 2) at room
temperature. However, narrow ribbons (WBl, corresponding to
Fig. 3c schematic) show decreased thermal conductivity due to
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Figure 3 | Schematic of size effects and different heat-flow regimes.

(a) Diffusive heat transport in ‘large’ samples with dimensions much

greater than the intrinsic phonon mfp (L, Wcl). This regime corresponds

to the samples measured in both substrate-supported6 and -suspended

graphene2,3 studies to date. (b) Quasi-ballistic heat flow in ‘short but wide’

samples (LBl and Wcl). This regime corresponds to our geometry

shown in Fig. 1a, with LE260 nm and WE12 mm. (c) Return to a diffusive

heat transport regime as the sample width is narrowed down, and phonon

scattering with edge roughness (of r.m.s. D) begins to dominate. This

regime corresponds to our arrays of GNRs from Fig. 1c–e (LE260 nm and

W varying from 45 to 130 nm). A fourth regime (long L, narrow W) is not

shown here, but it can be easily understood from the above.
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phonon scattering with edge disorder. Thus, the usual meaning of
thermal conductivity must be carefully interpreted when it
becomes a function of sample dimensions. The results also
suggest powerful means to tune heat flow in 2D nanostructures
through the effects of sample width, length, substrate interaction
and edge disorder.

Methods
Sample fabrication. Graphene monolayers were deposited on SiO2/Si (B290 nm/
0.5 mm) substrates by mechanical exfoliation from natural graphite. Graphene
thickness and GNR edge disorder were evaluated with Raman spectroscopy4,21,35.
Samples were annealed in Ar/H2 at 400 �C for 40 min. Electron (e)-beam
lithography was used to pattern the heater and thermometer electrodes as long,
parallel, B200-nm-wide lines with current and voltage probes, with a separation of
LE260 nm (Fig. 1). Electrodes were deposited by successive evaporation of SiO2

(20 nm) for electrical insulation and Ti/Au (30/20 nm) for temperature sensing.
Additional e-beam lithography and oxygen plasma etching were performed when
needed, to define GNR arrays with pitch B150 nm and varying widths.

Electrical and thermal measurements. The heater electrode is slowly ramped up
(o0.2 mHz) to 1.5 mA. We measured the resistance change of the sensor electrode
through a lock-in technique with a frequency of 2,147 Hz and r.m.s. current of 1 mA
(carefully verified to avoid additional heating). All electrical measurements were

performed in a four-probe configuration, inside a Physical Property Measurement
System (Quantum Design).

Numerical simulation. We obtain the thermal conductivity by solving the
Boltzmann transport equation in the relaxation time approximation, including
scattering at the rough GNR edges31. The simulation uses the phonon
dispersion of an isolated graphene sheet, which is a good approximation for
SiO2-supported graphene within the phonon frequencies that contribute most to
transport8, and at typical graphene–SiO2 interaction strengths7. (However, we note
that artificially increasing the graphene–SiO2 coupling, for example, by applying
pressure43, could lead to modifications of the phonon dispersion and hybridized
graphene–SiO2 modes7.) We assume a graphene monolayer thickness
H¼ 0.335 nm and a concentration of 1% 13C isotope point defects2,6. The
interaction with the SiO2 substrate is modelled through perturbations to the
scattering Hamiltonian6 at small patches where the graphene is in contact with the
SiO2, with nominal patch radius a¼ 8.75 nm. Anharmonic three-phonon
interactions of both normal and umklapp type are included in the relaxation
time (see Supplementary Note S7). An equivalent 2D ballistic scattering
rate25,29 B2vx/L is used in the numerical solution (x is the heat flow direction
along graphene) to account for transport in short GNRs.
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Supplementary Figure S1 | Process to define the graphene nanoribbon (GNR) widths. (a) 

PMMA mask method. (b) Al mask method. 
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Supplementary Figure S2 | Atomic force microscopy (AFM) images of GNR arrays. (a) W ~ 

130 nm GNRs. (b) W ~ 85 nm GNRs. (c) W ~ 65 nm GNRs. Inset: AFM image near metal 

electrodes.  (d) W ~ 45 nm GNRs. The axis units are given in microns on each panel. 
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Supplementary Figure S3 | Raman spectra of GNR arrays and un-patterned graphene. (a) 

Raman signal for W ~ 130, 85, 65, 45 nm GNRs and un-patterned graphene (same as Fig. 1f of 

main text, repeated here for convenience). Each spectrum is vertically offset for clarity. Inset is 

the ID/IG ratio as a function of GNR width. (b) Zoomed-in D, G, and D’ bands of all samples. (c-g) 

2D bands with a single Lorentzian fit for all samples, consistent with the existence of monolayer 

graphene. 
 



4 

 

 

VH

Lock-in amplifier

2.147 kHz

1
 k

Ω

<
 2

 m
H

z

π-filter

sensor

heater

1 MΩ

 

 

Supplementary Figure S4 | Scanning electron micrograph (SEM) of thermometry platform 

and measurement configuration. Scale bar is 4 µm. Image taken of sample after graphene was 

etched off, and after all electrical and thermal measurements were completed. Dark region 

around “part 1” is substrate charging due to previous SEM imaging performed to obtain Fig. 1b 

in the main text. 
 



5 

 

 

0 50 100 150 200 250 300 350

45

50

55

60

65

70

 

 

R
 (

O
h

m
)

T (K)

 Sensor

 Heater

0 20 40 60 80 100 120 140
0

50

100

150

200

 


R

S
 (

m


)

P
H
 (W)

0 20 40 60 80 100 120 140
0.0

0.5

1.0

1.5

2.0

2.5

 

 


T

S
 (

K
)

P
H
 (W)

90 95 100 105 110
51.5

52.0

52.5

53.0

53.5
0.0866 Ω/K

ΔTS/PH = 0.01797 K/µW

T=100 K

T=100 K

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 SiO2 (part 2)

 GNR, W = 45 nm

 GNR, W = 65 nm

 GNR, W = 85 nm

 GNR, W = 130 nm

 Graphene (L=0.26 um)

 

 

P
H
/

T
S
 (

W

/K
)

T (K)

a b

c d
distinguishable

 
 

Supplementary Figure S5 | Measurement process. (a) Sensor resistance change, ∆RS as a 

function of heater power, PH at T =100 K for the SiO2 sample (Fig. S4). Red and black lines are 

taken with current flow in opposing direction. (b) Calibration of sensor and heater resistances as 

a function of temperature. The inset shows the R-T curve and slope of the sensor near T = 100 K. 

(c) Converted sensor temperature rise, ∆TS as a function of heater power, PH at T = 100 K from 

(a) and (b). The slope of the fitted red line is ∆TS/PH = 0.01797 K/µW, which is later used to 

extract the thermal properties of the SiO2 layer (see Figs. S7-S8). (d) Measured ratio of heater 

power to sensor temperature rise for all representative samples. The uncertainty of these data is 

~2% (Tables S1 and S2), comparable to the symbol size. Although this plot shows all raw data 

taken, the values can be distinguished without ambiguity only at T ≥ 70 K, which is the 

temperature range displayed in the main text Figs. 2 and 4. 
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Supplementary Figure S6 | Measurement error and thermal steady-state. (a) Sensor 

resistance as a function of count number (time) at background T = 102 K. (b) Heater power, PH 

and corresponding resistance change in sensor, ΔRS as a function of time. 
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Supplementary Figure S7 | 3D Finite element method (FEM) model. (a) Whole structure of 

3D FEM model. (b) Zoomed-in structure to show the core area of the thermometry. (c) More 

zoomed-in structure to show different layers. (d) Typical distribution of temperature rise due to 

heating in simulations which matches with measurements.      
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Supplementary Figure S8 | Control experiment to extract SiO2 thermal properties. (a) 

Sensor and heater temperature rise normalized by heater power from measurements taken at part 

1 and part 2 of the SiO2 sample (see Fig. S4). (b) Extracted thermal conductivity of SiO2 from 

two measurements compared with well-known data from Ref. 44. The green solid line is the 

polynomial fit up to the 7th order to our data. (c) Extracted thermal boundary resistance of the 

SiO2-Si interface, Roxs. The green solid line is the fit to our data by Eq. S1.  
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Supplementary Figure S9 | Data of three unpatterned graphene samples (all L ~ 260 nm). 
(a) SEM image of the unpatterned graphene sample GS2 (colorized for emphasis). (b) Measured 

ratio of heater power to sensor temperature rise of all three graphene samples compared with that 

of SiO2 sample from the control experiment (Fig. S8). (c) Extracted graphene thermal 

conductivity of all our “short” samples (L ~ 260 nm) compared with the “long” graphene (L ~ 10 

μm) reported in Ref. 6. (d) Thermal conductance per unit area compared to theoretical ballistic 

limit of graphene. 
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Supplementary Figure S10 | Complete data sets including low-T range and comparison 

with CNTs. (a) Extracted thermal conductivity of graphene (GS1) and GNRs, same as Fig. 2 in 

main text but with low-T (20~60 K) data included for completeness. Long graphene data are 

from Ref. 6. Inset: power exponent β vs. GNR width fit from k = αT
β
 (see text). (b) Thermal 

conductance (G/A) of our data compared with those of long graphene
6
, ballistic limit, SWCNT of 

M. Pettes et al.
45

, and MWCNTs from studies of P. Kim et al.
46

, M. Pettes et al.
45

, and M. Fujii 

et al.
47
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Supplementary Figure S11 | Width dependence of GNR thermal conductivity and electrical 

mobility. (a) Thermal conductivity k vs. W at several temperatures from this study (L ~ 260 nm); 

same plot as Fig. 2d but on a log-log scale. (b) Electrical mobility μ vs. W at room temperature 

for several layer (L) GNRs, adapted from Ref. 11. Solid line is a fit to data points with μ = 

(1/0.0163W
3
 + 1/3320)

-1
. Both data sets show a decreasing trend as W is narrowed, but with 

different fall-offs (see text). 
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Supplementary Figure S12 | Phonon dispersion of graphene. (a) Computed dispersion 

relation in graphene based on force constant model where force constants are approximated up to 

the 4th nearest neighbors. Six branches are observed: out of plane acoustic (ZA), in plane 

transverse acoustic (TA), in plane longitudinal acoustic (LA), out of plane optical (ZO), in plane 

transverse optical (TO) and in plane longitudinal optical (LO). (b) Dispersion of ZA mode (top) 

and TO mode (bottom). (c) Representation of graphene reciprocal lattice with basis vectors to the 

first nearest reciprocal cells. 
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Supplementary Figure S13 | Computed phonon scattering rates at T = 300 K for a GNR 
with W = 65 nm, L = 260 nm, and Δ = 0.65 nm. Substrate contact patch radius is a = 8.75 nm. 

Rates are plotted as a function of energy for each scattering mechanism and their total; however, 

each dot represents one phonon mode. Note that angle-dependent mechanisms like contact and 

edge roughness scattering have additional dependence on the angle of the phonon velocity 

vector, which can lead to different rates for the same value of phonon energy. 
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Supplementary Figure S14 | Schematic of a rough graphene nanoribbon. The definitions of 

width (W), length (L), edge roughness (Δ), and edge angle (θE) are indicated. The x and y 

coordinates as well as the x and y components of phonon velocity are also depicted. 
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Supplementary Figure S15 | Dimension scaling behaviors. (a) Variation of lattice thermal 

conductivity and (b) mean free path with the length of graphene samples for a wide (W=2 μm) 

and narrow (W=65 nm) ribbon, showing that the length effect is more pronounced in wide 

ribbons. Phonons in narrow ribbons suffer more scattering at the rough edges; hence, the effect 

of length is weaker in narrow GNRs. (c) Dependence of thermal conductivity on ribbon width 

shows good agreement with experimental data (symbols). Our model shows that thermal 

conductivity in short (L=260 nm) ribbons is independent of width when ribbons are wide (W>L), 

but strongly dependent on width when they are narrow (W<L), consistent with strong diffuse 

scattering at the rough edges. (d) Effect of rms edge roughness Δ is confirmed in the dependence 

of the mfp, where we can see that the phonon mfp in wide ribbons is largely independent of Δ, 

while the mfp in narrow ribbons decreases with increasing Δ, indicating the strong role of edge 

roughness in thermal transport in narrow GNRs. 
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Supplementary Figure S16 | Ballistic limit of graphene thermal conductance. Comparison of 

numerically calculated ballistic conductance Gball/A (symbols) using the full 2D phonon 

dispersion from Ref. 48, and that of the simple analytic approximation given in Eq. S21 (lines). 

The ballistic contributions of the various phonon branches are also shown.  
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Supplementary Table S1 | Uncertainty analysis for heat flow in the unpatterned “short” 

graphene. Example of calculated sensitivities and uncertainty analysis for the thermal 

conductivity of the graphene sample GS1 at 300 K. The extracted k is 319 Wm
-1

K
-1

 and its 

overall uncertainty is 19%. 
 

Units Values x i

Uncertainty 

u xi

u xi /x i

Sensitivity  

s i

Contribution 

c i =|s i |×u xi /x i

c i
2
/Σc i

2

Expt. Sensor response ΔT S/P H K/μW 0.01635 0.0002 1.2% 4.49 5.5% 8.6%

k ox 1.267 0.04 3.2% 4.25 13.4% 51.6%

k Si 115 10 8.7% 0.55 4.8% 6.6%

k met 55 4 7.3% 0.34 2.5% 1.8%

R gox 1.15E-08 2.0E-09 17.4% -0.12 2.1% 1.3%

R oxs 9.92E-09 3.0E-09 30.2% -0.25 7.6% 16.5%

R mox 1.02E-08 3.0E-09 29.5% 0.05 1.5% 0.7%

t box 288 1 0.3% -5.65 2.0% 1.1%

t tox 20 1 5.0% -0.01 0.1% 0.0%

t met 50 2 4.0% 0.35 1.4% 0.5%

D met 494 5 1.0% 5.38 5.4% 8.5%

D tox 486 5 1.0% 2.39 2.5% 1.7%

Wmet 186 4 2.2% -0.16 0.3% 0.0%

W tox 224 4 1.8% -0.17 0.3% 0.0%

Half length of H/S 

electrodes
L HS/2 5.86 0.03 0.5% 0.04 0.0% 0.0%

Distance of 2 

Voltage probes
D pVV 4.23 0.02 0.5% 3.75 1.8% 0.9%

Distance of 

Current and 

Voltage probes

D pIV 1.04 0.02 1.9% 0.003 0.0% 0.0%

G
e
o

m
e
tr

ic
a

l

Thickness of 

bottom and top 

SiO2, and metal

nm
Distance of H/S 

metal lines and 

H/S SiO2 lines

Width of metal and 

SiO2 lines

μm

Input parameters (T = 300 K)

T
h

e
r
m

a
l

Thermal 

conductivity of  

SiO2, Si, metal

W/m/K

TBR of 

graphene/SiO2, 

SiO2/Si, metal/SiO2 

interfaces

m
2
K/W
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Supplementary Table S2 | Uncertainty analysis for GNR thermal conductivity. Example of 

calculated sensitivities and uncertainty analysis for the thermal conductivity of GNRs with W = 

65 nm at 300 K. The extracted k is 101 Wm
-1

K
-1

 and its overall uncertainty is 60%. 
 

Units Values x i

Uncertainty 

u xi

u xi /x i

Sensitivity  

s i

Contribution 

c i =|s i |×u xi /x i

c i
2
/Σc i

2

Expt. Sensor response ΔT S/P H K/μW 0.0124 0.0002 1.6% 13.22 21.3% 12.9%

k ox 1.267 0.04 3.2% 10.38 32.8% 30.5%

k Si 115 10 8.7% 2.61 22.7% 14.6%

k met 22 2 9.1% 0.68 6.2% 1.1%

k g 320 60 18.8% 0.001 0.0% 0.0%

R gox 1.15E-08 2.0E-09 17.4% -0.04 0.6% 0.0%

R oxs 9.92E-09 3.0E-09 30.2% -1.00 30.3% 26.1%

R mox 1.02E-08 3.0E-09 29.5% 0.11 3.4% 0.3%

t box 291 1 0.3% -22.51 7.7% 1.7%

t tox 25 1 4.0% -0.17 0.7% 0.0%

t met 40 2 5.0% 0.70 3.5% 0.3%

D met 517 5 1.0% 14.73 14.2% 5.8%

D tox 509 5 1.0% 14.25 14.0% 5.6%

Wmet 218 4 1.8% -0.64 1.2% 0.0%

W tox 266 4 1.5% -2.27 3.4% 0.3%

WGNR 65 3 4.6% -0.80 3.7% 0.4%

Half length of H/S 

electrodes
L HS/2 5.77 0.03 0.5% 0.20 0.1% 0.0%

Distance of 2 

Voltage probes
D pVV 4.17 0.02 0.5% 7.80 3.7% 0.4%

Distance of 

Current and 

Voltage probes

D pIV 1.04 0.02 1.9% -0.286 0.5% 0.0%

G
e
o

m
e
tr

ic
a

l

Thickness of 

bottom and top 

SiO2, and metal

Distance of H/S 

metal lines and 

H/S SiO2 lines

μm

Width of metal 

lines, top SiO2 

lines, and GNRs

nm

Input parameters (T = 300 K)

T
h

e
r
m

a
l

TBR of 

graphene/SiO2, 

SiO2/Si, metal/SiO2 

interfaces

m
2
K/W

Thermal 

conductivity of  

SiO2, Si, metal, and 

outter graphene

W/m/K

 
 
 

 

 

 

 

 

 



19 

 

Supplementary Note 1: Fabrication and Characterization of Graphene 

Nanoribbons 

 

Fabrication process: We used two approaches to define and fabricate graphene nanoribbons 

(GNRs): one with a PMMA mask (Fig. S1a), the other with an Al mask (Fig. S1b)
49

. Double 

poly(methyl methacrylate) (PMMA) layers (PMMA 495K A2/PMMA 950K A4) were coated on 

the Si/SiO2 substrate. For the electron (e)-beam lithography, we used 30 keV e-beam 

accelerating voltage. After opening 40 nm wide PMMA windows, we etched the graphene 

exposed through the windows with an oxygen plasma, creating GNRs of width W (Fig. S1a). 

This PMMA mask method was used for the W ≈ 130 nm, ~85 nm, and ~65 nm wide GNRs. For 

the narrower ~45 nm GNRs we used Al masks (Fig. S1b). In this case, after opening the PMMA 

windows, instead of plasma etching, we deposited 30 nm thick Al and obtained ~45 nm wide Al 

strips on graphene. After plasma etching of exposed graphene and Al etching (type A, Transene 

Company) we obtained ~45 nm wide GNRs. Figure S2 shows the atomic force microscopy 

(AFM) images of fabricated GNR arrays with W ≈ 130 nm, 85 nm, 65 nm, and 45 nm, 

respectively. The bottom and top regions of Figs. S2a and S2c correspond to the un-etched 

pristine graphene.  

Raman characterization of GNR arrays: To characterize the prepared GNRs, we performed 

Raman spectroscopy with a 633 nm wavelength laser (~1 µm spot size) as shown in Fig. S3 and 

Fig. 1f of the main text. Even before patterning into GNRs, we selected only monolayer 

graphene flakes, identifiable through their 2D (G’) to G Raman peak ratio, and through a single 

fitted Lorentzian to their 2D (G’) peak. The unpatterned graphene samples had no identifiable D 

peak, indicative of little or no disorder
50

. On the other hand, the GNR arrays showed a 

pronounced D band consistent with the presence of edge disorder
21

. The peak intensity of the D 

band with respect to that of the G band increases with narrower GNR width. Because the edges 

of graphene serve as defects by breaking the translational symmetry of the lattice, the larger 

fraction of the edge in narrow GNRs will enhance the D peak
51

. The inset of Fig. S3a (same as 

Fig. 1f in the main text, repeated here for convenience) quantitatively shows the behavior by 

calculating the ratio of integrated D band (ID) to G band (IG), ID/IG, as a function of GNR width 

(symbols). The width dependence of the peak ratio follows a relation of ID/IG = cW
-1

 with c = 210 

nm (dashed line), which is consistent with previous reports of GNR characterization
21, 52

. Figure 

S3b shows the D, G, and D’ peaks in detail of fabricated GNR arrays and un-patterned graphene 

with 633 nm wavelength laser. Figures S3c-g show the Raman 2D band spectra (scattered points) 

for the samples. All 2D bands are fit by a single Lorentzian peak (solid red curves) with ~2650 

cm
-1

 peak position, which is consistent with previous reports of monolayer graphene and 

GNRs
21

. 
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Supplementary Note 2: Experimental Set-Up and Data Analysis 

 

Experimental set-up: Figure S4 shows a scanning electron microscopy (SEM) image of our 

typical thermometry platform of a substrate-supported sample with heater and thermometer 

(sensor) electrodes. Here, the sample is shown for the measurement of the SiO2 layer, after the 

exposed graphene has been removed by an oxygen plasma etch (however, graphene still exists 

under the metal electrodes, consistent with the other samples). To block environmental noise 

including electrostatic discharge, π-filters with a cut-off frequency of 2 MHz were inserted 

across all measurement lines. To control the temperature, PPMS (Physical Property 

Measurement System, Quantum Design) was used with a temperature range of 10 K – 363 K. 

Inside the PPMS, the vacuum environment is always a few ~10
-3

 Torr, rendering convective heat 

losses negligible.  

We sometimes found that the electrical resistance of the sensor slowly drifted (increased) 

with time at room temperature. However, this effect was stabilized after annealing the sample at 

363 K for 5 min, eliminating resistance drift at room temperature. Therefore, this behavior could 

be related to the absorbed water on the metal electrodes. For the heater, we apply a sinusoidal 

voltage with frequency lower than 2 mHz through a standard resistor of 1 kΩ to flow current 

with a range of ±1.5 mA, generating sufficient heating power. To obtain the response of the 

sensor (thermometer), we measured its resistance change by a standard lock-in method with 

excitation frequency 2.147 kHz and current 1 μA (carefully chosen to avoid self-heating).  

Measurements and Data analysis: Figure S5a shows the measured sensor resistance change, 

∆RS, as a function of the power applied to the heater, PH, at T = 100 K for the SiO2 sample (Fig. 

S4). The black (for negative heater current, IH) and red (for positive IH) lines overlap with each 

other, indicating the measurement is symmetric and reliable. The calibration for sensor and 

heater resistance vs. temperature is shown in Fig. S5b; thus, sensor heating due to heater power 

∆RS can be converted to a temperature rise, ∆TS, as shown in Fig. S5c by using the resistance-

temperature calibration curve. The fitted slope of the ∆TS vs. PH curve in Fig. S5c is 0.01797 

K/µW, which is then used for the extraction of thermal properties through simulations (see 

Section 3). Figure S5d shows the measured ratio of PH to ∆TS for all representative samples as a 

function of ambient temperature from 20 K to 300 K. The uncertainty of the electrical 

thermometry measurement is ~2% (Tables 1 and 2), which is comparable to the symbol size on 

this plot. Thus, although data are available down to 20 K, the values are distinguishable without 

ambiguity only when T ≥ ~70 K, which is the temperature range shown in Figs. 2 and 4 of the 

main text.  

We note that PH/ΔTS shown in Fig. S5d is not the thermal conductance through graphene, 

because ΔTS is the temperature rise in the sensor, not the temperature drop from the heater to 

sensor, and PH is the heat generated in the heater, not the one flowing in graphene. The thermal 

conductance of the graphene cannot be immediately extracted from our raw data, due to heat 

leakage into the substrate (a drawback of the substrate-supported thermometry method). Instead, 

we employ 3D simulations to carefully account for all heat flow paths and, by comparison with 

the experiments, to obtain the thermal conductance of the graphene samples (see Section 3). 

Error analysis: Figure S6a shows the sensor resistance as a function of count number (time) 

without applying current to the heater at T = 102 K. The standard deviation of the scattered data 

points is δR = 3.1 mΩ, which corresponds to δT ~ 36 mK by using calibration coefficient 0.0866 
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Ω/K obtained in Fig. S5b. Thus, the error of the temperature reading is ±36 mK, primarily due to 

slight ambient temperature fluctuations in the PPMS (consistent with a fluctuation of ±30 mK of 

the displayed temperature on the PPMS monitor). Zooming into the circled region of Fig. S6a, 

we note a resistance fluctuation δR = 0.17 mΩ, corresponding to a temperature uncertainty ±2 

mK due to electrical measurement instruments. Therefore, during the time scales of most of our 

measurements our temperature accuracy is limited by the ambient temperature control of the 

PPMS rather than by the electrical measurements themselves. 

Establishment of thermal steady-state: The sweep speed of the heater power is chosen to be 

sufficiently slow to reach thermal steady-state between the heater and sensor. Figure S6b shows 

the heater power (PH) sweep with time and corresponding resistance change in the sensor, ∆RS. 

Data shown here correspond to the linear ramp in Fig. S5a. After ~15 minutes, the heater power 

reaches its maximum, and the change of sensor resistance follows the same trend without delay, 

indicating that the thermal steady-state between the heater and the sensor is established during 

the entire sweep process. If the sweep speed of the heater power is too fast to reach the steady-

state, the data point at PH ~ 110 µW in Fig. S5a will deviate from the linear trend. We also 

verified this by a comparison between the corresponding constant DC power and the above 

methods. 
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Supplementary Note 3: 3D Simulation to Extract Thermal Properties 

 

To extract the thermal properties of graphene, GNRs, or the SiO2 substrate from the 

measured ∆TS vs. PH, we use a commercial software package (COMSOL) to set up a three-

dimensional (3D) finite element method (FEM) model of the entire structure. A typical setup is 

shown in Fig. S7, where only a half of the sample is included due to the symmetry plane which 

bisects the region of interest. The size of the Si substrate is 100×50×50 μm
3
, covered by a 290 

nm thick SiO2 layer. While the simulated Si substrate is slightly smaller than the actual Si chip 

employed in practice (to manage computational complexity and meshing), the size of the 

simulated structure has been carefully chosen and verified to reproduce all heat flow through the 

substrate itself. Figure S7b shows the zoomed-in structure containing the core area of the 

thermometry, with GNRs, heater, and sensor highlighted by different colors. A more zoomed-in 

structure is shown in Fig. S7c, where from top to bottom different layers are 40 nm metal, 25 nm 

top oxide insulator, GNRs, 290 nm bottom oxide, and silicon, respectively.  

To perform the simulation, the bottom surface and three side surfaces (except symmetry 

plane) of the Si substrate are held at the ambient temperature, i.e. isothermal boundary condition. 

Other outer surfaces of the whole structure are treated as insulated, i.e. adiabatic boundary 

condition. The Joule heating in the heater is simulated by applying a power density within the 

heater metal, and the stationary calculation is performed to obtain the temperature distribution in 

the steady state, as shown in Figs. 1e and S7d typically. After calculating the average 

temperature rise in the measured segment of the sensor, we obtain the simulated value of 

(∆TS/PH). Thus, the simulation effectively fits the thermal conductance (G) of the test sample 

between heater and thermometer. The thermal conductivity (k = GL/A) of the test sample is thus 

an effective fitting parameter within the FEM simulator, ultimately adjusted to yield the best 

agreement between the simulated and measured ∆TS vs. PH. This fitting process is implemented 

by using MATLAB to interface directly with the COMSOL software, taking ~0.5 hour on a 

single desktop computer to converge to a best-fit value at a single temperature point for a typical 

calculation. 

Before performing a substantial amount of calculations, a series of optimizations were 

carried out. First, the mesh was optimized. Due to the extreme ratio of the graphene/GNRs 

thickness (~0.34 nm) to their typical in-plane dimensions (~10 μm), this subdomain was 

optimized using a swept mesh strategy rather than the typical free mesh. Other subdomains were 

optimized carefully using the free mesh strategy, and in the bottom oxide and Si substrate the 

mesh size grows gradually from the heating region to the boundaries. Second, the real substrate 

size is about 8×8×0.5 mm
3
, which can be regarded as a semi-infinite substrate relative to the 

small heating region (~10 μm). In FEM modeling, however, we have to select a finite size for the 

substrate due to the computational limitation. By choosing the distance from the center of the 

heater to the side and bottom surfaces of the substrate as a testing variable, we found 50 μm is 

large enough to model this 3D heat spreading, consistent with the recent work by Jang et al.
5
. 

Third, the length of the six probe arms attached to the heater and sensor (see Fig. S7b) was 

chosen as 2 μm (shorter than their real counterparts), which was found to be sufficiently long to 

mimic any peripheral heat loss. Fourth, it was confirmed that the simulated ∆TS/PH is 

independent of the power PH applied in the heater, which means the final results do not rely on 

the choice of the power PH.     
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Supplementary Note 4: Thermal Properties of the SiO2 Underlayer 

 

To validate our thermometry approach, we have carefully focused on a control experiment to 

measure the thermal properties of the SiO2 underlayer supporting our samples. The sample was 

first prepared as described before, including the graphene under the heater and thermometer 

electrodes, to reproduce the thermal contacts encountered in all samples. However, the exposed 

graphene was then etched by an oxygen plasma, leaving the bare SiO2 as shown in Fig. S4 and 

Fig. 1b. Measurements were performed on part 1 and part 2 of the metal electrodes (see Fig. S4), 

and the analyzed sensor and heater temperature rises normalized by heater power as a function of 

the ambient temperature are shown in Fig. S8a.  

To compare our 3D simulations to this experimental data set, we needed to fit the thermal 

properties of the SiO2 layer (which dominate), and to a lesser degree those of the SiO2-Si thermal 

boundary resistance (TBR) at the bottom of the SiO2 layer (which also plays a role). While the 

thermal conductivity of SiO2 is well-known and easy to calibrate against
44, 53

, to the best of our 

knowledge no consistent data for the TBR of the SiO2-Si interface (Roxs) exist as a function of 

temperature. Two recent studies
54, 55

 suggested Roxs ~ 5−7×10
-8

 m
2
KW

-1
 at room temperature, but 

some earlier efforts
56-60

 found the total TBR of metal-SiO2-Si interfaces as low as ~1−3×10
-8

 

m
2
KW

-1
, putting an upper bound on Roxs without being able to separate it from the total TBR. 

Due to this contradiction, we set out to obtain the temperature-dependent Roxs, treating it as 

another fitting parameter of our simulations in addition to the thermal conductivity of SiO2 (kox). 

Other thermal parameters well characterized in the literature are the thermal conductivity of 

highly doped Si
61-63

, thermal boundary resistances of the graphene-SiO2 interface
64, 65

 and the 

Au-Ti-SiO2 interfaces
4
. In addition, the effective thermal conductivity of the metal electrodes 

(Au/Ti) was calculated from the measured electrical resistance according to the Wiedemann-

Franz Law, where an average Lorentz number L = 2.7×10
-8

 WΩK
-2

 is used for Au/Ti 

electrodes
66

. (all parameters were allowed to vary within known experimental bounds, leading to 

the uncertainty analysis in Section 6 below.) 

Our extracted kox and Roxs of two data sets (part 1 and 2) are shown in Figs. S8b and S8c, 

respectively. Our kox data are in a good agreement with well-established values reported by 

Cahill
44

, and the typical uncertainty is ~5% at most temperatures. By fitting our kox data with a 

polynomial up to the 7
th

-order, we obtained a smooth dependence of kox on T (green solid line), 

and this was used to extract the thermal properties of our graphene and GNRs. Our extractions 

suggest Roxs ~ 10
-8

 m
2
KW

-1
 at room temperature, in agreement with the reported upper bound in 

Refs. 56-60. For the subsequent thermal analysis, our Roxs data are best fit by a simple 

expression, 

   
4

9

2.25

1.046 10
( ) 9.67 10

( 13.4)
oxsR T

T




  


 m
2
K/W  (S1) 

as shown by the green solid line in Fig. S8c. Thus, this control experiment demonstrates the 

feasibility and reliability of our thermometry platform, also giving the first report of the 

temperature-dependent TBR of SiO2-Si interfaces. 
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Supplementary Note 5: Additional Data and Comparisons 

 

All data of graphene samples: We examined three “short” graphene samples (GS1, 2, 3) 

which were not patterned into GNRs; all had length L ~ 260 nm and width W ~ 12 μm between 

the heater and thermometer electrodes. Besides GS1 which is shown in Fig. 1a of the main paper, 

the SEM image of another sample (GS2) is shown in Fig. S9a. The third one (GS3) broke after 

measurements at two temperature points, which are nevertheless listed among the data in Fig. S9. 

Figure S9b displays raw data taken as ratio of heater power to sensor temperature (PH/ΔTS) for 

all three samples; the corresponding data of the SiO2-only sample (part 2 of Fig. S8a) is also 

plotted here for comparison. The presence of graphene notably “heats” the sensor (higher ΔTS) 

and is distinguishable from the SiO2-only sample all the way down to ~20 K (although the GNRs 

become harder to distinguish below ~70 K as mentioned earlier). The extracted graphene thermal 

conductivities are shown in Fig. S9c, and the three samples show very similar values. They all 

decrease from ~300 Wm
-1

K
-1

 at 300 K to ~10 Wm
-1

K
-1

 at 30 K and show similar temperature 

dependence. The data of the “long” graphene with L ~10 μm from Ref. 6 are also plotted in Fig. 

S9c (black dots). 

Ballistic percentage: We compare the sample thermal conductance to the theoretical ballistic 

limits in Fig. S9d, recalling the relationship between conductance and conductivity, G = kA/L. 

The theoretical ballistic limit Gball/A is calculated by using the full phonon dispersion of 

graphene and integrating over the entire 2D Brillouin zone (see Section 9). Our three “short” 

graphene samples all display on average ~35% of the ballistic conductance limit, indicating they 

reach a quasi-ballistic conduction regime. The data for the 10-μm “long” sample from Ref. 6 

show <2% of ballistic limit on average, indicating a diffusive transport regime as would be 

expected for a sample much longer than the phonon mean free path (mfp). Both percentages are 

consistent with a simple estimation of transmission probability ~λbs/(λbs + L) using their own 

lengths and back scattering mean free path λbs = (π/2)λ ~ 160 nm (see main text) where the 

intrinsic phonon mfp λ ~ 100 nm for most temperatures. 

Data with low-T range: Figure S10a shows the extracted thermal conductivity of our “short” 

graphene (GS1) and GNRs for the full temperature range measured, down to ~20 K (however, 

we recall that GNR measurements are challenging to distinguish below ~70 K, as previously 

mentioned). We can fit the thermal conductivity as k = αT
β
 below ~200 K, and the obtained 

power β is shown as an inset of Fig. S10a. We find that β decreases from ~1.6 for the 

unpatterned graphene to ~1 for narrow GNRs. However, we note that this does not necessarily 

mark a transition to one-dimensional (1-D) phonon flow, as the GNRs here are much wider than 

the phonon wavelengths (few nm). Thus, the simple model is given as a convenient analytic 

estimate, and the exponent β represents the complex physical behavior of GNR heat flow due to 

the increasing heat capacity (which scales as ~T
1.5

) and the slightly decreasing phonon mfp in 

this T range. 

We also compare our extracted graphene and GNR thermal conductance with carbon 

nanotubes (CNTs) in Fig. S10b. We perform this comparison with the calculated ballistic upper 

limit, with a single-wall carbon nanotube (SWCNT) by M. Pettes et al.
45

, and with multi-wall 

carbon nanotubes (MWCNTs) by P. Kim et al.
46

, M. Pettes et al.
45

, and M. Fujii et al.
47

. We find 

that our short graphene data (red filled dots) and P. Kim’s MWCNT data
46

 (open black squares) 

have the highest values, both reaching up to ~35% of the ballistic limit of graphene. 
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Figure S11 displays the width W dependence of our GNR thermal conductivity side-by-side 

with the electrical mobility measured by Yang and Murali
11

 on similar samples (Fig. S11a is 

replot of Fig. 2d in the main text, here using log axis). Both the GNR thermal conductivity and 

electrical mobility show a similar trend with W, starting to decrease significantly when scattering 

becomes edge limited. However it is apparent that their fall-off occurs at different critical widths: 

W ~ 200 nm for thermal conductivity and W ~ 40 nm for electrical mobility. Above these widths, 

the thermal conductivity is limited by phonon-substrate scattering, while the electrical mobility is 

limited by electron scattering with substrate impurities. The difference between their critical W is 

consistent with the intrinsic phonon mfp λph ~ 100 nm being approximately five times larger than 

the intrinsic electron mfp
42

 λel ~ 20 nm in SiO2-supported graphene. (We note phonons are 

entirely responsible for the thermal conductivity of these GNRs, with a negligible electronic 

contribution
13

). Thus, the fall-off of thermal conductivity and electrical mobility corresponds 

approximately to GNR widths approximately twice the phonon and electron mfps. Interestingly, 

this also suggests a GNR width regime (~40 < W < ~200 nm) where the thermal conductivity is 

reduced from intrinsic values but the electrical mobility is not yet affected by edge disorder. This 

suggests the possibility of manipulating heat and charge flow independently in such narrow 

edge-limited structures. Further control of such behavior could also be achieved if substrates 

with different roughness, impurity density, and vibrational (phonon) properties are used.  
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Supplementary Note 6: Uncertainty Analysis 

 

We can estimate the uncertainty of our analysis with the classical partial derivative method: 
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where uk is the total uncertainty in the extracted thermal conductivity k, uxi is the uncertainty in 

the i-th input parameter xi, and the dimensionless sensitivities si are defined by 
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The partial derivatives are evaluated numerically by giving small perturbation of each parameter 

around its typical value and redoing the extraction simulation to obtain the change of k. To 

highlight the relative importance of each input parameter, we define their absolute contributions 

as ci = |si|×(uxi/xi), and relative contributions as ci
2
/Σci

2
. The uncertainty analysis for extracting 

kox and Roxs from the SiO2 control experiment is performed in the same way. 

Table S1 summarizes the sensitivities and uncertainty analysis for the unpatterned graphene 

(GS1) at 300 K. All input parameters can be separated into 3 classes: experimental data, thermal 

parameters, and geometric parameters. Their uncertainties are our estimates considering both 

random and systematic errors, and those of experimental and thermal parameters are updated 

appropriately as the temperature changes. The calculated sensitivities show that the graphene 

thermal conductivity is the most sensitive (|si| > 2) to the measured sensor response (ΔTS/PH), 

thermal conductivity (kox) and thickness (tbox) of bottom SiO2, center-to-center distances between 

metal lines of heater and sensor (Dmet), between top SiO2 lines of heater and sensor (Dtox), and 

between two voltage probes (DpVV). These findings are consistent with previous work by W. 

Jang et al.
5
 using similar substrate-supported thermometry structures. The input parameters with 

the greatest relative uncertainty (uxi/xi) are all three TBRs, thicknesses of top SiO2 (ttox) and metal 

(tmet), and the thermal conductivity of the Si substrate (kSi) and metal (kmet). The combined effects 

of both sensitivities and relative uncertainties show that five largest contributions (ci > ≈ 5%) to 

the overall uncertainty of our thermal measurement are from ΔTS/PH, kox, kSi, Roxs, and Dmet. In 

slight contrast to Ref. 5, we find that uncertainties introduced by Roxs, Rmox and tmet are non-

negligible for our structure and should be considered. On the other hand, geometric parameters 

related to the shape and size of the graphene sheet have very small sensitivities (|si| < 0.001), so 

their contributions are negligible in uncertainty analysis and not listed in Table S1.  

For the extraction of GNR thermal conductivity, an example of calculated sensitivities and 

uncertainty analysis at 300 K is summarized in Table S2 (here for the sample with W ~ 65 nm). 

Compared with Table S1, we have two more parameters: the thermal conductivity of outer 

graphene connected to GNRs (kg) and the width of GNRs (WGNR). The parameters with the 

largest sensitivities (|si| > 5) are the same as those in Table S1, but their values increase because 

the total width of the GNR array is smaller than that of the unpatterned graphene. Due to the 

significant increase of sensitivities, the total uncertainty increases from 19% for unpatterned 

graphene to 60% for GNRs, while the input parameters with the greatest contributions (ci > 10%) 

to the total uncertainty are ΔTS/PH, kox, kSi, Roxs, Dmet, and Dtox, the same as those for graphene 
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along with Dtox. From the 60% total uncertainty, approximately 21% is due to measurement 

uncertainty and the remainder from geometric and temperature-dependent variables as listed in 

Table S2. [we note that the geometric parameters related to the shape and size of GNRs and 

graphene outside the heater and sensor region have very small sensitivities (|si| < 0.01) and are 

not listed in Table S2, which is also consistent with the GNR results being insensitive to kg.] 

For other GNR samples with different widths, the total uncertainties gradually increase from 

22% to 83% at 300 K as W decreases from ~130 to ~45 nm, as less heat flows in the GNR array 

rather than the substrate. As the temperature decreases, the uncertainties of all graphene and 

GNR thermal conductivities also increase due to either increased sensitivities or increased 

relative uncertainties of input parameters.  

As mentioned earlier and shown in Tables S1 and S2, all input parameters are classified into 

three groups, not all of which need to be included when comparing relative GNR thermal 

conductivities (e.g. with width or temperature). For instance, Fig. 2b in the main text compares 

the thermal conductivities of the samples at different temperatures considering the contributions 

of experimental and thermal parameters to the error bars. Similarly, Fig. 2d compares thermal 

conductivities of different samples at the same temperature, considering the contributions of 

experimental and geometric parameters to the error bars. Different samples share the same 

thermal parameters and these uncertainties would only shift all k values in the same direction 

without affecting their relative values. In the end, the differences are relatively subtle, and within 

the fitting capabilities of our models, all based on the initial data above 70 K which are clearly 

distinguishable from one another as seen from the raw thermometry in Fig. S5d.  
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Supplementary Note 7: Boltzmann Transport Equation (BTE) Model 

 

The primary carriers of heat in graphene are phonons, at all temperature of interest in this 

study (20-300 K). In this section we develop a general model for thermal transport in graphene 

nanostructures based on the phonon Boltzmann transport equation (BTE). We consider scattering 

of phonons from 3-phonon interactions, line edge roughness, substrate roughness, 
13

C isotopes, 

as well as corrections for the ballistic behavior in short GNRs. Due to the strong influence of 

edge disorder on transport in narrow GNRs, we employ a momentum-dependent model for the 

interactions of phonons with line edge roughness
31

, while the remainder of scattering 

mechanisms is treated in the usual perturbation theory formalism. 

In the direction of propagation, assuming a discrete distribution of phonon momentum 

states q along branches s, the thermal conductivity can be expressed as 
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with vs(q) the speed of sound in a branch s, N = [exp(ħω/kT)-1]
-1

 the equilibrium Bose-Einstein 

distribution function at temperature T and energy ħω, and τs,tot(q) the total relaxation time. 

First, it must be noted that thermal conductivity calculation calls for a volume V of the 

sample (e.g. in m
3
). In the case of 2D graphene, the volume is obtained by assuming a finite 

effective height of the monolayer graphene sheet, which we take to be
40

 H = 0.335 nm. This 

value reproduced experimental observations of the thermal conductivity of graphene flakes with 

excellent accuracy and will be used in the remainder of this section. 

 Second, in order to capture the dependence of the phonon velocity and energy on both the 

direction and magnitude of the phonon momentum, a full phonon dispersion relation is computed 

in the entire graphene Brillouin zone. We use a force constant (FC) method, as described by 

Saito et al.
67

. For this purpose, force constants are considered up to the fourth nearest neighbors. 

The force constants are taken from the improved model based on fitting the FC model to DFT 

results
67

. The full phonon dispersion relation and representation of the graphene Brillouin zone 

are shown in Fig. S12. We use the phonon dispersion of an isolated graphene sheet, which is a 

good approximation for SiO2-supported graphene within the phonon frequencies that contribute 

most to transport
8
, and at typical graphene-SiO2 interaction strengths

7
. (However, we note that 

artificially increasing the graphene-SiO2 coupling, e.g. by applying pressure
43

, could lead to 

modifications of the phonon dispersion and hybridized graphene-SiO2 modes
7
.) 

The total phonon scattering rate is a combination of isotopes/impurities, 3-phonon decays, 

edge roughness, substrate, and a ballistic correction term, such that 

                         

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )tot I U LER S ballq q q q q q               .  (S5) 

 7.1 Impurity and Umklapp Scattering: 

 The semi-classical impurity scattering rate is given
31

 by τI

-1
= S0Γρ(q)ω

2
(q)/4. The strength 

of the interaction due to mass-difference scattering with isotopes (Γ) is calculated assuming the 

natural 1% concentration of 
13

C, with no other impurities assumed to be present, S0 is the area of 

a cell of the first Brillouin zone (FBZ) and ρ(q) is the vibrational density-of-states. 



29 

 

The model of 3-phonon decays distinguishes between of processes of type I (emission of a 

phonon) and type II (recombination of two phonons). Umklapp processes must satisfy 

conservation of momentum and energy. Using the set of destination nearest neighbor reciprocal 

cells (Fig. S12c), the decay of a phonon q0 into q1 and q2 requires that 

   0 1 2iq b q q    

  0 1 2( ) ( ) ( )q q q          (S6) 

Similarly, for type II umklapp processes, phonon absorption happens in accordance with 

conservation of energy and momentum 

   0 1 2iq q b q    

  0 1 2( ) ( ) ( )q q q             (S7) 

Equations S6 and S7 above, with conditions on allowed combinations of phonon 

momentum vectors, define finite curves on the Brillouin plane. For instance, given an initial 

phonon momentum q0 and branch s0, the set of decay momentum q1 from branch s1 that allows 

decay with a branch s2 is a line in the 2D first Brillouin zone. Thus, it is possible to approximate 

the delta function in order to realize energy conservation in the energy space. Computationally, 

handling the delta function requires particular care for its diverging nature. Here we use the 

following analytical representations of the Dirac function 
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In computations, keeping the value of δ small but non-zero, gives an approximation to the 

Dirac function which respects the properties of symmetry and unicity of the function, and avoids 

introducing biases in computation of integrals. As a result, approximating δ(ω0(q0) - ω1(q1) -

ω2(q2)) can be achieved by the following steps: 

 For a given q0 in the propagation direction, compute all allowed combinations of q1, q2 

satisfying momentum conservation. 

 For the allowed transitions, determined the corresponding phonon frequencies from the 

dispersion relation tables pre-computed using the FC method. 

 Using the phonon frequencies above, compute delta functions for allowed transitions 

between bands. 

Given the law of energy and momentum conservation, the 3-phonon scattering rate is 

computed from the following summation
40

 for absorption 
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where N is the equilibrium Bose-Einstein distribution, ρ is the areal mass density of graphene, 

and vs0(q0) is the group velocity of mode q0 and branch s0. Similarly for emission: 
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where Γ is the Gruneisen parameter. The value Γ = 1 used by Nika et al.
40

 provides the best 

agreement with experimental results. 

In Fig. S13e, the dependency of the umklapp scattering rate with ω
2
 clearly appears. Fig. 

S13f represents the computed total scattering rates in a short, SiO2-supported GNR at T = 300 K. 

For acoustic branches, the model shows substrate and edge roughness scattering are the dominant 

scattering mechanisms in such a GNR. The optical modes are primarily limited by umklapp 

scattering, however they do not contribute to thermal conductivity due to very low occupancy at 

the temperatures of interest in this work. Given the results for total scattering rates in Fig. S13f, 

we can deduce that heat propagation in GNRs supported on SiO2 mostly occurs through the 

longitudinal and transverse acoustic branches (LA and TA; also see Fig. 4 in the main text). 

7.2 Edge Roughness Scattering:  

In order to account for edge disorder, we compute a scattering rate between phonons and 

the line edge roughness (LER). Our model is based on partially specular interactions of phonons 

with LER and considers the interaction of lattice waves with the random variation at the GNR 

edges
31

. When a phonon wave reaches one of the edges, one of two things can happen: the 

phonon can either be reflected, resulting in a specular interaction which only flips the phonon 

momentum about the edge of the GNR without randomizing it, or it can be scattered diffusely, in 

which case the phonon momentum is randomized. A diffuse scattering event interrupts the flow 

of heat by randomizing the direction of the phonon propagation, thereby reducing thermal 

conductivity. The fraction of phonon interaction with the edge roughness that is specular is given 

by the specularity parameter p(q), a number between 0 and 1. In order to capture the full 

dependence of LER interactions on the direction and magnitude of phonon momentum, as well 

as the root-mean-square (rms) amount of edge roughness (Δ), we employ a momentum-

dependent specularity parameter, given by 

   
 2 2 2( ) exp 4 sin Ep q q    ,      (S11) 

where q is the magnitude of the phonon momentum, Δ is the rms roughness variation of the 

edges, and θE is the angle between the direction of phonon momentum and the edge. In this form, 

the specularity parameter is able to capture the details of the interaction between each phonon 

mode and the roughness at the edges
31

. 

However, the specularity parameter only gives us the probability of scattering each time a 

phonon interacts with an edge; in order to obtain the total rate of scattering with the edges, we 

have to trace each phonon mode through multiple possible specular interactions at the edges until 

it is either scattered diffusely at an edge, or scattered by another process while traveling between 

two opposite edges. Assuming phonons originate from locations which are uniformly distributed 

across the width of the ribbon, the average distance any phonon has to travel to the edge is W/2 

along the direction normal to the edge. For a phonon mode q and velocity vector vs(q), the time it 

takes to cross the distance W/2 and reach the edge depends on the magnitude of the component 

of the phonon velocity vector in the cross-ribbon y-direction (along the direction normal to the 
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edge, see Fig. S14). Then the velocity component in the cross-ribbon direction is vy(q) and the 

time it takes to reach the edge will be W/[2|vy(q)|]. 

Upon reaching the edge, the phonon has a probability [1-p(q)] of scattering diffusely at that 

edge, and a probability p(q) of simply being reflected at the edge and continuing. In the latter 

case, the phonon then travels another distance of W across the ribbon until reaching the opposite 

edge, where it can again scatter diffusely with a probability of [1-p(q)] or undergo another 

specular reflection and continue on its path. This process gives us an infinite series of terms 

accounting for all the possible scattering events and their probabilities as 
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This infinite series can be written as a product of two terms: a pre-factor W/[2|vy(q)|]∙[1-p(q)] and 

an infinite series in powers of p(q) which can be summed in closed form as 
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Then the total phonon lifetime due to scattering with the line edge roughness (LER) is given by 
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We note here that this derivation
31, 68

 unlike similar expressions previously derived for 3D 

structures
69

, includes the dependence of the LER scattering rate on the angle between the phonon 

velocity direction and the edges through both the momentum- (and thus angle-) dependent 

specularity parameter p(q) and the y-component of the phonon velocity vector. 

7.3 Substrate Roughness Scattering:  

The oxide on which the graphene is deposited allows for phonon recombination across the 

interface, and the presence of coupling between graphene and SiO2 creates spatially variable 

perturbations of the Hamiltonian along the ribbon
6
. These exchanges can be modeled by 

considering a series of atomic points of contact between the graphene sheet and the substrate, 

due to the roughness of the oxide at the interface. The scattering rate on a phonon branch i due to 

the combination of phonons leaking into the oxide, and geometrical perturbation of transport in 

graphene due to the rough contact points is
6
:
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where Γ is the proportion of scattering centers, MC and MX the molecular mass of carbon and 

oxide, and ρC and ρX the density of phonon states in graphene and oxide respectively. Here Kfi are 

the interface force constants, whose values are obtained by Seol et al.
6
. In our interface model, a 

is the average radius of a contact spot between the graphene and substrate due to SiO2 roughness. 

We further assume a Gaussian distribution of asperities at the SiO2 surface
70

 with auto-

covariance length lX and rms roughness ΔSiO2. In this assumption, asperities can be modeled by 

Gaussian shaped defects, whose radius of curvature at the summit is on average 
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In modeling of the interaction between graphene and the substrate, since the graphene only 

partially conforms to the asperities of the rough substrate, we model hemispherical asperities on 

the SiO2 surface to calculate the radius of the patches where the graphene is in contact with the 

substrate. We assume that the graphene is deposited on the asperity summits over a height δ = 

0.5 Å such that the average radius of the spot contacts is 
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It is here remarkable that the second term of substrate scattering representing perturbations 

of heat conduction in graphene due to the substrate roughness varies mainly as (lX
4
/ΔSiO2

2
). In 

particular, we note that an increase in substrate surface roughness rms results in improved 

conduction, as the graphene sample is in this case more “suspended”. Figure S13c represents the 

substrate scattering rates for acoustic branches that provide the best fit with the observed thermal 

conductivity in our collection of flakes and ribbons. 

7.4 Ballistic Conduction Correction:  

When the length of the GNR (L) becomes comparable to or smaller than the intrinsic 

phonon mean free paths (Figs. 4b,d in main text), then the influence of the contacts has to be 

taken into account. Since we treat the contacts as being large reservoirs, they can be assumed to 

be in equilibrium. This is also a good approximation in our experiments, where the contacts are 

large metal/oxide structures, approximately 200 nm wide and 70 nm tall, providing a large 

number of bulk vibrational modes to help equilibrate the phonons arriving from the GNR. The 

effect of contacts on phonon transport is to terminate the path of the GNR phonons, meaning that 

the longest phonon mean free path (mfp) cannot be longer than the physical length of the GNR 

(also see discussion on some small sub-continuum contact effects in the main text). 

In the case of “short” GNRs, it becomes possible that a proportion of phonons transmits 

from one contact to the other without encountering other scattering events. In the extreme limit 

of complete absence of any other scattering, this behavior can be represented as ballistic 

transport under Landauer's formalism (see main text Fig. 2 and discussion); however, within our 

semi-classical BTE formalism it is convenient to combine the effect of the contacts with other 

scattering mechanisms. Therefore, we treat this effect as an additional corrective scattering 

mechanism that is included in our model, with lifetime τball, as derived below.  

The lifetime of phonons due to the presence of contacts can be derived in a similar way to 

the treatment of line edge scattering. The effect of the contacts is similar to a completely diffuse 

boundary condition, as there is no reflection (the approximation of a perfectly absorbing contact) 

and the phonon momentum gets rapidly randomized when it enters a contact where the number 

of modes it can scatter with is very large. Then we consider phonons originating uniformly 

throughout the GNR and traveling toward one of the contacts with a velocity component vx(q) in 

the x-direction along the ribbon (see Fig. S14). The average time to reach the contact will then be 

L/[2|vx(q)|] for contacts separated by a distance L. Since there is no reflection at the contacts, the 

total phonon lifetime will simply equal the time to reach the contact, given by 
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which is consistent with the rate used for ballistic scattering by Lindsay et al.
71

. Since the phonon 

dispersion of graphene is not entirely isotropic, the result given in Eq. S18 is able to capture the 

angular dependence of the phonon velocity vector by taking the velocity component in the x-

direction (along the GNR) as the relevant velocity for scattering due to contacts. The effect of the 

angular dependence of phonon velocity on the contact-limited ballistic scattering rate can be seen 

in Fig. S13a where we note that the rate depends not only on the energy of the phonons, but that 

different modes with the same energy can have different velocity components along the x-

direction, leading to variation in the scattering rate. 
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Supplementary Note 8: Additional BTE Results and Discussion 

 

The frequency-dependent phonon mfp is directly obtained from the calculated total 

scattering rate (e.g. Fig. S13f). The frequency-dependent mfp is a weighted average for each 

branch as 
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where cs(ω) and vs(ω) are the frequency-dependent heat capacity and group velocity, capturing 

the mfp with each frequency weighted by its contribution to the total thermal conductivity. 

We show that the lattice thermal conductivity (Fig. S15a) and the phonon mfp (Fig. S15b) 

both scale with the length of the GNR in “short” ribbons due to the mfp being limited to about 

half the length, as expressed in Eq. S18 in the previous section. A difference exists between wide 

(W = 2 μm) and narrow (W = 65 nm) ribbons due to the presence of edge roughness scattering in 

the narrow ribbons. In the wide ribbons, the most significant scattering mechanism is substrate 

scattering, which limits the phonon mfp to around 100 nm (the value to which the total mfp 

converges for “long” ribbons in figure S15b). We note that this value is very nicely consistent 

with the average substrate-limited (or intrinsic) mfp deduced through a simple comparison with 

the ballistic conductance limits in the main text (Fig. 2 and surrounding discussion). 

For a sample length L ~ 200 nm, or approximately twice the intrinsic mfp, the length-

dependent ballistic scattering rate is comparable to the substrate scattering rate and the effective 

thermal conductivity and phonon mfp become one-half of the substrate-limited values (Fig. 

S15a-b for “wide” sample). However, in narrow GNRs, the diffuse scattering at the edges limits 

the phonon mfp to approximately one-half of the width W (the LER-limited mfp also depends on 

the rms edge roughness, as shown in Fig. S15d). Consequently, thermal transport in narrow 

GNRs is mostly diffusive until the length is reduced to values comparable to the width, and 

phonon transport again becomes partially ballistic (shown by solid lines in Fig. S15a-b).  

We also observe that there is a limit to the effect of Δ on thermal transport: as edge 

roughness increases, more small-q (large wavelength) phonons become scattered diffusely at the 

rough edges, as dictated by the specularity parameter in Eq. S11. However, strong substrate 

scattering in ribbons supported on SiO2 also affects these long wavelength modes due to their 

lower energies (as can be deduced from the strong 1/ω
2
 dependence of the substrate scattering 

rate in Eq. S15), leading to a saturation in the Δ dependence seen in Fig. S15d. Such separation 

of energy ranges where substrate and edge roughness scattering dominate opens the possibility of 

independent control of these two spectral components of thermal transport by adjusting substrate 

and edge roughness independently. 
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Supplementary Note 9: Analytic and Empirical Modeling Notes 

 

The theoretical ballistic limit Gball/A (symbols in Fig. S16) is calculated by using the full 

phonon dispersion of graphene
19, 48

 and integrating over the entire 2D Brillouin zone: 
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where s is the phonon mode (branch), H is the graphene thickness, q is the phonon wavevector, 

vn,s is the phonon group velocity, N is the equilibrium Bose-Einstein distribution. The obtained 

value at room temperature is Gball/A(300 K) = 4.16 GWK
-1

m
-2

; this value can differ by ±5% 

depending on the phonon dispersion used
40, 48, 67, 72

, and is ~15% higher than obtained by only 

considering a simple 1D dispersion along the Γ-M direction
22

. (These observations were also 

pointed out previously in Ref. 19.) The numerically calculated Gball/A can be well fitted by a 

simple analytical expression: 
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over the temperature range 1-1000 K, as shown by the red line in Fig. S16. Below ~100 K, 

Gball/A is dominated by the contribution of the flexural ZA modes, which scales as ~T
1.5

 due to its 

quadratic dispersion for low frequency phonons, ω ~ q
2
. The contributions of TA and LA modes 

scale as ~T
2
 due to their linear dispersion for low frequency phonons, ω ~ q, and these become 

noticeable above 50 K. Thus, the combined Gball/A scales with a power exponent that can be 

approximated as ~T
1.68

 over a wide temperature range (a little steeper than ~T
1.5

), as shown 

above. 

The L-dependence of graphene thermal conductivity (solid lines in Fig. 2c) is obtained with 

the three-color model from Eq. 1 of the main text, where Gp,ball/A is taken from our calculation 

shown in Fig. S16, and kp,diff is from theoretical simulations in Ref. 6, matching their 

experimental data. At T = 300 K, kdiff ≈ 560 ± 50 Wm
-1

K
-1

, and kp,diff = 148, 214, 198 Wm
-1

K
-1

 

for p = ZA, TA, LA modes, respectively. 

The W-dependence of GNR thermal conductivity (solid lines in Fig. 2d, the same as Fig. 

S11a) is obtained by Eq. 2 of the main text, where k(L) is given by Eq. 1 [k(L) = 346, 222, 158, 

37 Wm
-1

K
-1

 for T = 300, 190, 150, 70 K, respectively], Δ = 0.6 nm, n = 1.8 for all displayed 

temperatures; here c was fitted as 0.04019, 0.02263, 0.01689, and 0.00947 Wm
-1

K
-1

 for T = 300, 

190, 150, and 70 K, respectively, although c cannot be assigned overly great physical meaning 

due to the limitations of the simple model, as explained in the main text. 
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